开放式成像研究(OASIS)是一个旨在使大脑的磁共振成像(MRI)数据集的大脑数据集,可自由使用科学界。通过编译和自由分发MRI数据集,我们希望促进基本和临床神经科学中的未来发现。具体来说,OASIS项目旨在扮演许多角色。首先,绿洲图像和相关措施是持续科学探索的数据集。从整个成人寿命中从有或没有痴呆症的400多个个人获得的一组图像开始,选择了绿洲数据集,以鼓励对高兴趣主题进行研究,并提供对个别实验室难以获取的数据。第二,OASIS数据是研究人员创建和推动分析技术的目标。由于图像是从多个年龄和健康状况的受试者中获取的,因此绿洲数据可用于测试人类大脑各种景观各个范围内技术的鲁棒性和有效性。第三,绿洲数据可以用作相似分析技术的基准目标。标准图像证明了证明和对比方法的共同参考点。通过仔细筛选
在衰老的动物模型中的实验研究,例如线虫,水果环或小鼠,已经观察到胰岛素或胰岛素信号降低会促进寿命。在人类中,高胰岛素血症和伴随胰岛素抵抗与与年龄相关疾病的风险升高有关,暗示了缩短的HealthSpan。与年龄有关的疾病包括神经退行性疾病,高血压,心血管疾病和2型糖尿病。高环境胰岛素浓度可促进脂肪生成和脂肪储存的增加,蛋白质合成的增强以及由于周转率有限而导致非功能性多肽的积累。此外,自噬活动受损,内皮NO合酶活性较少。这些变化与线粒体功能障碍和氧化应激有关。胰岛素合成代谢活性诱导的细胞应激引发了一种适应性反应,旨在维持稳态,其特征是AMP激活激酶的转录因子NRF2激活和展开的蛋白质反应。在长寿的人类中,这种保护性反应比在衰老研究的短暂模型中更有效,从而导致胰岛素对线虫和水果环的影响更强。在人类中,由于胰岛素和胰岛素抵抗水平的增加,对胰岛素诱导的细胞应激的抗性随着年龄的增长而降低,但NRF2激活较少。这些有害的变化可能是通过采用促进胰岛素/胰岛素抵抗水平低的生活方式来包含的,并增强了对细胞应激的适应性反应,如饮食限制或运动所观察到的那样。
现在,我们知道了我们的示例的基线栖息地类型和状况(状况良好的酸草)以及干预后的栖息地类型和状况将是什么(去除INNP后处于中等状态的酸草原),可以将其输入度量。以及本文未讨论的指标中的其他因素(例如,战略意义),该指标随后为基线栖息地和干预后栖息地产生生物多样性价值(以生物多样性单位进行了测量)。如果干预后栖息地的生物多样性单位得分高于基线栖息地的生物多样性单位得分,则您可以在生物多样性单位获得净收益。生成的生物多样性单元的确切数量将取决于各种因素,包括大小,位置和状况。
正电子发射断层扫描(PET)和计算的刻录术(CT)通常共同用于检测肿瘤。PET/CT分割模型可以自动化肿瘤的描述,但是,当前的多模式模型不能完全阐明每种模式中的互补信息,因为它们要么串联PET和CT数据,要么在决策水平上融合它们。为了对抗这一点,我们提出了镜像u-net,它通过将多模式表示形式分配到模态特异性的解码器分支和辅助多模态解码器中,以多模态化的方式代替了传统的融合方法。在这些分支上,镜像u-net标志着一个针对每种模式量身定制的任务,以增强单峰特征,同时保留共享表示中的多模式特征。与以前的方法相比使用了其他方法或多任务学习,Mirror U-net将两个范式结合在一个统一的框架中。我们探索各种任务组合,并检查在模型中共享的哪些参数。我们在Autopet PET/CT和多模式MSD Braintumor数据集上评估了Mirror U-NET,证明了其在多模式分段中的有效性并在两个数据集中实现了先进的性能。代码:https://github.com/zrrrrr1997/ autopet_challenge_mirrorunet
a 瑞士苏黎世大学心理学系可塑性研究方法 b 瑞士苏黎世大学和苏黎世联邦理工学院苏黎世神经科学中心 (ZNZ) c 瑞士苏黎世大学大学研究优先计划“健康老龄化动力学” d 法国帕莱索巴黎萨克雷大学、Inria、CEA e 德国莱比锡马克斯普朗克人类认知和脑科学研究所神经病学系 f 加拿大魁北克省蒙特利尔蒙特利尔大学老年医学研究所功能神经影像科 g 美国德克萨斯州奥斯汀德克萨斯大学戴尔医学院计算神经影像实验室 h 美国密歇根州底特律韦恩州立大学老年学研究所和心理学系 i 加拿大蒙特利尔康考迪亚大学心理学系 j 大脑与运动研究所认知神经解剖学实验室épinière,法国巴黎 k 德克萨斯大学心理学系,美国德克萨斯州奥斯汀
气候变化是21世纪最紧迫的问题之一,影响了世界各国的生态系统,经济和社会。全球温度的升高,极端天气事件的频率以及自然资源的持续消费突出了一种集体方法的紧迫性。气候变化通常是由燃烧化石燃料,砍伐森林,牲畜以及其他基于人类的生活方式和对发展渴望的行为引起的。具体来说,气候变化的主要原因和地球温度的变化包括产生能力,制造商品,使用运输和发射温室气体的费用。覆盖地球的气体排放,然后捕获太阳的热量,导致全球变暖和气候变化。
背景:计算机断层扫描 (CT) 仍然是创伤性脑损伤 (TBI) 成像评估的金标准。TBI 本身因其不良影响已成为发展中国家的主要问题。目的:目的是评估患有 TBI 的患者的颅脑计算机断层扫描图像。材料和方法:对 2013 年 11 月 13 日至 2019 年 5 月 31 日期间在尼日利亚乌约大学教学医院因头部受伤而接受颅脑 CT 检查的患者进行了回顾性研究。持续时间与服务中断的不连贯时间无关。应用简单的数据分析评估了患者的人口统计学和 CT 特征。结果:评估了 232 名患者,最小年龄为 6 个月,最大年龄为 78 岁。男性患者占多数,比例为 2.74:1。受影响最大的年龄段为 30-39 岁(23.27%)和 20-29 岁(22.84%)。44 名患者(18.97%)的脑 CT 正常。CT 异常患者中最常见的病变是颅内出血(n = 188,81.03%)。其中,脑外出血(n = 100,53.19%)超过脑内出血(n = 88,46.81%)。一半的脑内出血是多发性的。34.48%(n = 80)的患者出现颅骨骨折。最常见的部位是面骨(n = 24,30.00%),而最少见的部位是枕骨(n = 4,5.00%)。15% 的患者有多处骨折,其中还包括颅底。结论:TBI 在年轻活跃男性中很常见。最常见的病变是伴有外轴偏向的颅内出血。
人工智能(AI)和成像技术的最新进展显着改变了肿瘤学的诊断和治疗景观(1-3)。越来越多的成像方式,例如CT,PET,US和MRI,正在越来越多地用于肿瘤成像(4-7),而新兴的跨学科领域(例如MR-LINAC)获得了相当多的牵引力(8,9)。肿瘤学中成像和治疗的这种加速融合强调,迫切需要进一步探索包括放射治疗在内的各种肿瘤学专业的AI和成像以增强癌症护理的作用。应对这种需求,提出了标题为“肿瘤学中的人工智能和成像”的主题,从而汇总了149名领域的作者/专家的19项贡献。这些贡献深入研究了AI和成像在肿瘤诊断和治疗中的潜力,探讨了新兴的AI驱动模型,以进行肿瘤学诊断和预测,并强调了从医学图像中提取定量特征以预测肿瘤行为,治疗反应和患者预后。
Poldrack,Russell A. 1,Markiewicz,Christopher J. 1,Appelhoff,Stefan 2,Ashar,Yoni K. 3,Auer,Tibor 4,5,Baillet,Sylvain,Sylvain 6,Bansal,Bansal,Shashank 7,Shashank 7,Beltrachini,Beltrachini,Beltrachini,Leanar,Leanar,Benar,Christian G. 9,Bertazzoli,bertazzoli,bertazzoli,bertazzoli,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,1111 ,, ,Blair,Ross W. 1,Bortoletto,Marta 10,Boudreau,Mathieu 16,Brooks,Teon L. 1,Teon L. 1,Calhoun,Vince D. 17,Castelli,Castelli,Filippo Maria 18,19,Clement,Clement,Patricia 20,21,Cohen,Cohen,Cohen,Cohen,Alexander L.22 23,24,吉尔斯(De Hollander),吉尔斯(De Hollander),25,de la iglesia-vayá,玛丽亚26,de la vega,Alejandro 27,Delorme,Arnaud,28,Devinsky,Orrin 29,Draschkow,Draschkow,Dejan,Dejan 30,Duff,Duff,Eugene Paul 31,Dupre,Dupre,Elizabeth 1,Earlin,Erlin,Erlind 32 Illaume 34,Galassi,Anthony 32,Gallitto,Giuseppe 35,36,Ganz,Melanie 37,38,Gau,Rémi39,Gholam 39,Gholam,James 40,Ghosh,Satrajit S. 41,Giacomel,Giacomel,Giacomel,Alessio,Alessio,Alessio 42 44 , Gramfort, Alexandre 45 , Guay, Samuel 46 , Guidali, Giacomo 47 , Halchenko, Yaroslav O. 48 , Handwerker, Daniel A. 32 , Hardcastle, Nell 1 , Herholz, Peer 49 , Hermes, Dora 50 , Honey, Christopher J. 51 , Innis, Robert B. 32 , Ioanas, Horea-Ioan 48 , Jahn, Andrew 52 , Karakuzu, Agah 16 , Keator, David B. 53,54,55 , Kiar, Gregory 56 , Kincses, Balint 35,36 , Laird, Angela R. 57 , Lau, Jonathan C. 58 , Lazari, Alberto 59 , Legarreta, Jon Haitz 60 , Li, Adam 61 , Li, Xiangrui 62 ,Love,Bradley C. 63,Lu,Hanzhang 64,Marcantoni,Eleonora 65,Maumet,Camille 66,Mazzamuto,Giacomo67,Meisler 67,Meisler,Steven L. 68,Mikkelsen,Mikkelsen,Mark 69 4,75,Niso,Guiomar 76,Norgaard,Martin 32,37,Okell,Thomas W. 59,Oostenveld,Robert 77,78,Ort,Ort,Eduard 79,Park J. 80,Patrick J. 80,Pawlik,Pallik,Pallik,Mateusz,Mateusz 81,Pernet,Pernet,Pernet,Cyril R.38,Pestilli,Pestilli,Pestilli,Petilli,franco,Petr,Petr,Petr,Jan,Jan 272菲利普斯(Phillips),克里斯托夫(Christophe),83,派恩,让·巴蒂斯特(Jean-Baptiste)84,波罗尼尼(Pollonini),卢卡(Luca)85,86,拉马纳(Raamana),普拉德普·雷迪(Pradeep Reddy),里特(Ritter),佩特拉(Ritter),佩特拉(Petra)88,89,90,91,92,里佐(Rizzo) 99,Routier,Alexandre 100,Saborit-Torres,Jose Manuel 26,Salo,Taylor 101,Schirner,Michael 88,89,90,91,92,Smith,Smith,Robert E. 102,103,Spisak,Spisak,Spisak,Spisak,Tamas,Tamas 35,104,Sprenger,Sprenger,Julia,Julia 105,Swann,Swann,Swann,Swann,Nicole C. C. C. Nicole C. 106 , Szinte, Martin 105 , Takerkart, Sylvain 105 , Thirion, Bertrand 45 , Thomas, Adam G. 32 , Torabian, Sajjad 107 , Varoquaux, Gael 108 , Voytek, Bradley 109 , Welzel, Julius 110 , Wilson, Martin 111 , Yarkoni, Tal 112 , Gorgolewski, Krzysztof J. 1
单光摄像机的惊人发展为科学和工业成像创造了前所未有的机会。但是,这些1位传感器通过这些1位传感器进行的高数据吞吐量为低功率应用创造了重要的瓶颈。在本文中,我们探讨了从单光摄像机的单个二进制框架生成颜色图像的可能性。显然,由于暴露程度的差异,我们发现这个问题对于标准色素化方法特别困难。我们论文的核心创新是在神经普通微分方程(神经ode)下构建的暴露合成模型,它使我们能够从单个观察中产生持续的暴露量。这种创新可确保在Col-Orizers进行的二进制图像中保持一致的曝光,从而显着增强了着色。我们演示了该方法在单图像和爆发着色中的应用,并显示出优于基准的生成性能。项目网站可以在https://vishal-s-p.github.io/projects/ 2023/generative_quanta_color.html