电子纺织品[5] 柔性触摸界面[6] 软机器人[7] 医疗监测[8] 和能量收集。[9] 智能材料在这些应用中占有重要地位。它们可以被描述为对外部刺激(以化学或物理刺激的形式)做出反应的材料,从而导致材料特性发生特定变化。如今,已经开发出多种智能聚合物材料,用于电容式或电阻式压力传感器以及湿度检测等应用。相对湿度是从农业生产到医疗监测等不同领域需要考虑的重要参数。[10,11] 人们提出了各种湿度传感器,它们具有多种传感技术,例如电容式、电阻式、电磁式、重量法和光学读数。[12,13] 电容式湿度传感器由夹在两个电极之间的活性传感材料制成。对于这种类型的传感器,人们实施了不同的方法来提高其灵敏度。第一个重要因素是传感材料的物理性质。许多研究人员对金属有机骨架 (MOF) 的使用很感兴趣,因为它们具有高孔隙率和高比表面积,可用于
基于银纳米线 (AgNW) 的透明电极 (TE) 具有良好的物理性能,由于其成本低、灵活性和低毒性,成为透明导电氧化物的有前途的替代品。然而,它们在恶劣条件下存在稳定性问题,而封装可以克服这些限制。本文报道了一种低成本、可扩展的透明电极制造和研究,该透明电极基于喷涂 AgNW 网络,该网络涂有通过大气压空间原子层沉积 (AP-SALD) 在温和沉积温度 (≤ 220°C) 下沉积的 MgO 薄膜。本文首次报道了通过 AP-SALD 制造 MgO 薄膜,并优化了它们在不同基底上的沉积。与传统的原子层沉积 (ALD) 相比,MgO 表现出纯相和保形生长,具有优先 (220) 晶体取向和更高的生长速率。此外,由于 MgO 在 AgNW 上的保形涂层,获得的纳米复合材料表现出约 85% 的高光学透明度和柔韧性,同时在热应力和电应力下保持高稳定性。事实上,这项研究表明,对于厚度仅为几纳米的薄 MgO 涂层,AgNW 网络的稳定性明显增强。最后,制造了一个概念验证透明加热器来融化一块奶酪。
Agent™Works™Works CNT墨水是为丝网印刷制定的,由我们的单墙CNT(ComoCat™技术),一种光学清晰的聚合物粘合剂和我们的专有墨水车(V2V™技术)组成。用于制造Agent-10产品结构的CNT墨水等级是Chasm-VC201。CNT墨水可在标准1L瓶中使用。agnw膜是通过在连续的透明塑料膜底物上涂上agnws向随机的Agnw网络制造的。agnw层厚度〜0.7μm。Agent-10:7 mil PC膜有一个底物选项,背面没有硬外套(HC)。用于制造Agent-10产品结构的AGNW膜的等级为chasm-agent-aw121。AGNW膜的标准板尺寸可提供高达457mm x 605mm的标准尺寸,也可以在大约中提供。605mm或1,210mm宽的卷。
可穿戴电子系统能够监测和测量多种生物物理、生化信号,帮助研究人员进一步了解人类健康以及人类表现与疾病之间的关系。在体育训练、健康监测和疾病诊断需求不断增长的推动下,基于材料科学、结构设计和化学技术的最新进展,生物集成系统正在以惊人的速度发展。各种可穿戴系统被创造出来,具有独特的测量目标和方法以及柔软、透明、可拉伸的特性。本综述总结了可穿戴电子技术的最新进展,其中还包括材料科学、化学科学和电子工程。可穿戴基础知识的介绍涵盖了随后对材料、系统集成和有前景的平台的考虑。还提到了对其物理和化学检测功能的详细分类。充分讨论了实现可拉伸性的策略和有前景的材料 AgNW。本文最后讨论了这一新兴领域面临的主要挑战性障碍,并承诺将开发出具有良好发展潜力的材料。
无转移的石墨烯透明导电电极(TCE)是有机太阳能电池(OSC)的二锡氧化物(ITO)的有前途替代品。在本工作中,对沉积温度和H 2流速如何影响RF血浆增强化学蒸气沉积的石墨烯Pro的生长,结构,光学和电气性能如何使用可持续来源进行了全面研究。倒置的几何形状OSC具有P3HT:PCBM光活性层在不同条件下开发的无传输石墨烯TCES上制造。此外,还研究了银纳米线(AGNW)与不同石墨烯膜的耦合,用于用于OSC的混合石墨烯-Agnws TCE。基于在低或零H 2流程下制备的石墨烯TCE的设备比H 2的高流量表现出更好的性能。同样,由于垂直定向的石墨烯纳米片的生长高度增加,因此在高温(> 700℃,石英上)预先削减的石墨烯TCES导致了设备的性能恶化,从而大大降低了膜的传播和表面粗糙度。目前的工作提供了对可持续碳源玻璃上RF-PECVD石墨烯的生长机理的扎实理解。更重要的是,对OSC的可持续性,环保,成本和时间效率的生产进行了优化,这为通往无ITO的无光电子学铺平了道路。
摘要:水凝胶是植入生物活性神经界面开发的理想材料,因为神经组织模仿了物理和生物学特性,可以增强神经接口的兼容性。然而,由于不可靠的界面键合,水凝胶和刚性/脱水的电子微结构的整合是具有挑战性的,而水凝胶与微机械制造过程所需的大多数条件不兼容。在此,我们提出了一种新的酶介导的转移打印过程来设计粘合剂生物水凝胶神经界面。通过含有各种导电纳米颗粒(NPS)的明胶甲基丙烯酰基(GELMA)的照片连接来制造供体底物,包括AG纳米线(NWS),PT NWS和PEDOT:PSS:形成可拉伸的导电性的BioelectRode,以形成一种称为np-np-doped geLma的可拉伸性bioelectRode。另一方面,由微生物转谷氨酰胺酶组成的接收器底物构成了与掺入的明胶(MTG-GLN)同时进行的时间控制的凝胶化和共价键增强的粘附,以实现预制的NP型NP型NP型Gelma特征的一步转移印刷。集成的水凝胶微电极阵列(MEA)具有粘合剂,并且在机械/结构上符合稳定的电导率。这些设备在水分上在结构上是稳定的,以支持神经元细胞的生长。尽管引入了AGNW和PEDOT:水凝胶中的PSS NP需要进一步研究以避免细胞毒性,但PTNW掺杂的Gelma表现出可比的活细胞密度。这种基于GLN的MEA有望是下一代生物活性神经界面。