摘要 . 淡水小龙虾 (Cherax quadricarinatus von Martens, 1868) 也称为红螯虾,是一种淡水龙虾 (甲壳类动物),具有开发为消费商品的潜力。龙虾养殖的发展可以采用集约化系统进行。幼体生产是生产食用规格龙虾的重要关键之一。幼体阶段的生产力必须由生长和存活来支持。适当的饲料是影响幼体生长和存活的重要关键之一。必须以全面的方式传达有关幼体所需营养的信息,以便对龙虾养殖发展工作有用。这篇评论文章旨在阐述幼体红螯虾的营养需求及其代谢作用。该评论通过研究印度尼西亚国内和国际上的各种文章进行,这些文章讨论了与红螯虾相关的主题,例如天然食物和饲料营养在幼体生长中的作用。综述结果表明,红螯螯虾养殖的重要问题之一是幼虾的生长和存活。幼虾表现出非选择性摄食行为,但存在个体发育过程中的饮食变化。红螯螯虾摄食习性特点是外源摄食,一般以腐烂的动植物、大型无脊椎动物、碎屑、大型植物和鱼类为食。红螯螯虾幼虾表现出滤食和刮食行为,属于非选择性摄食者。在养殖环境中,一些研究表明红螯螯虾幼虾以 Alona sp.、Daphnia sp.、Artemia sp.、红虫、蚕以及一些与其他有机物的组合(如米粉、胡萝卜、金螺、蚯蚓和凤尾鱼)为食。营养成分与摄食习性、个体发育过程中的饮食变化及其酶代谢之间存在一定的关系。幼年红螯虾需要的蛋白质多于碳水化合物和脂质,尽管维生素和矿物质的整体营养摄入对生长和生存很重要。关键词:摄食习性、生产力、蛋白质、个体发育。引言。淡水龙虾是具有养殖和商业发展潜力的小龙虾 (甲壳类动物) 之一。广泛养殖的小龙虾品种之一是红螯虾 (Cherax quadricarinatus von Martens, 1868),它是澳大利亚北部和巴布亚新几内亚东南部的本土品种 (Lawrence & Jones 2002;Snovsky & Galil 2011;Partini 等人 2019;Akmal 等人 2021;Faiz 等人 2021)。
assalamualaikum warahmatullahi wabarakatuh,早上好,马来西亚萨拉姆·玛达尼(Salam Madani)。有福的拿督杰西卡·乔·库(DATUK JESSICA CHEW)副州长,银行Negara马来西亚,祝福Datin Seri Seri Seri Seri Seri Seri Rajakumar主席,马来西亚气候治理马来西亚有福的Datuk and Azimah Abdul Aziz首席执行官马来西亚公司委员会
糖尿病(DM)是一种代谢性疾病,标有高血糖水平。酒渣鼻科家族的成员是抗氧化剂的良好来源。因此,目前的工作试图检查体外α-淀粉酶和α-葡萄糖苷酶抑制的潜力,以及Rosa Brunonii L.果实氯仿提取物(RBFCE)对Alloxan(Alxn)诱导的糖尿病的抗糖尿病活性。RBFCE浓度在体外活动中使用了20、50、100、250、500和750 g/mL,而口服剂量为500 mg/kg,750 mg/kg和1000 mg/kg,在一次性试验中,给大鼠21天。隔离,并将现代光谱技术用于表征和结构阐明。隔离化合物被鉴定为儿茶素。对于α-淀粉酶和α-葡萄糖苷酶抑制活性,RBFCE的IC 50值分别为322.06±17.40和248.93±1.62。针对α-淀粉酶和α-葡萄糖苷酶抑制的IC 50值分别为64.64±3.70和67.60±4.20。在21天的研究期间, RBFCE治疗调节血糖水平的剂量依赖性依赖性。 组织病理学研究表明,RBFCE在胰腺组织中已在一定程度上恢复了受损的腺泡结构。 仅观察到局灶性组织破坏。 RBFCE处理显示出正常的肾小球,没有炎症,增殖,坏死,甲状腺功能化和纤维化的迹象。 以剂量依赖性方式,所有提取物处理的组具有比对照组更受保护的胰腺和肾脏组织。RBFCE治疗调节血糖水平的剂量依赖性依赖性。组织病理学研究表明,RBFCE在胰腺组织中已在一定程度上恢复了受损的腺泡结构。仅观察到局灶性组织破坏。 RBFCE处理显示出正常的肾小球,没有炎症,增殖,坏死,甲状腺功能化和纤维化的迹象。 以剂量依赖性方式,所有提取物处理的组具有比对照组更受保护的胰腺和肾脏组织。仅观察到局灶性组织破坏。RBFCE处理显示出正常的肾小球,没有炎症,增殖,坏死,甲状腺功能化和纤维化的迹象。以剂量依赖性方式,所有提取物处理的组具有比对照组更受保护的胰腺和肾脏组织。目前的研究结果表明,与阴性对照组相比,RBFCE具有明显的α-淀粉酶和α-葡萄糖苷酶抑制活性,调节血糖水平并使糖尿病大鼠的组织病理学标记正常化。
摘要 集成光信号处理器与传统电信号处理器相结合,有望开辟新一代信号处理硬件平台的道路,从而显著提高处理带宽、延迟和功率效率。硅光子学以其众所周知的特性和潜力,被认为是设备实现的理想候选者,特别是对于高电路复杂度的设备,因此一直是研究的重点。从前面对此类处理器的讨论来看,我们正在考虑在硅光子平台中构建新的构建块,以进一步扩展处理器功能和增加实用功能,特别是微型设备,这些设备能够将复杂电路超密集地集成到此类处理器芯片中。作为启发性的例子,我们在此回顾了我们最近的贡献以及其他组的硅光子设备紧凑设计中的代表性作品,这些设计丰富了处理器构建块的功能,例如多路复用、偏振处理和光学 I/O。本综述中显示的结果反映了最先进的光子制造技术的意义和成熟度,并有助于实现芯片级的大容量、通用光信号处理功能。