引言人工智能 (AI) 的发展已展现出令人瞩目的性能,特别是在图像处理或游戏等明确定义的领域。然而,所部署的技术对于人类用户来说可能是不透明的,这引发了一个问题:人工智能系统如何提供解释 (Neerincx 等人,2018 年;Rosenfeld 和 Richardson,2019 年),并且监管框架对可解释人工智能 (XAI) 的需求日益增长。话虽如此,2017 年,谷歌的研究主管 Peter Norvig 指出,在人类可能不擅长提供“解释”的情况下期望计算机提供“解释”是具有讽刺意味的。可解释人工智能 (XAI) 的大部分工作都严重依赖于以计算机为中心的视角 (Springer,2019 年)。例如,Holzinger 等人 (2020) 假设人类和人工智能系统可以平等地访问“基本事实”。由此可见,可解释性“……突出了机器表示中与决策相关的部分……,即有助于模型在训练中的准确性或特定预测的部分。”与许多 XAI 文献一样,这并没有为人类提供任何角色,只能作为被动接受者。这意味着人工智能系统能够反省自己的过程来生成解释。然后将得到的解释呈现给用户,并描述人工智能系统的流程或它使用过的特征(“决策相关部分”)。这样,解释就只是一个建议(来自人工智能系统)加上与此相关的特征。正如 Miller (2017) 所指出的那样,这种态度的一个问题在于,它是基于设计师对什么是“好的”解释的直觉,而不是基于对人类如何响应和利用解释的合理理解。这并不能说明为什么选择某些特征,也不能说明为什么建议适合用户的关注点。它也没有将解释置于更广泛的组织中;分析师的解释可能与数据收集管理人员或接受分析师简报的经理的解释不同。对于 Holzinger 等人 (2020) 来说,情况的各个方面(定义为基本事实)被组合成一个陈述;也就是说,解释只是这个陈述的一种表达。这意味着从特征到解释存在线性插值。这类似于 Hempel 和 Oppenheim (1948) 的“覆盖定律模型”,该模型关注的是历史学家如何根据先前的原因来解释事件。然而,“基本事实”(由 Holzinger 的过程模型和覆盖定律模型假设)很少得到完全定义(导致在选择相关特征时产生歧义)。这意味着,仅仅陈述情况方面而不说明为什么选择这些方面(而不是其他方面)可能不会产生有用或可用的解释。霍夫曼等人(2018)对与解释相关的文献进行了全面的回顾。从这篇评论来看,解释涉及人类的理解(将人工智能系统的输出置于特定情境中),我们同意,考虑这一点的适当框架是数据框架的理解模型(Klein 等人,2007)。此外,理解(及其与解释的关系)依赖于认识到过程(提供和接收解释)必须是相互的、迭代的和协商的。这个过程依赖于“解释者”和“被解释者”达成一致。换句话说,解释涉及“共同点”(Clark,1991),其中理解上有足够的一致性以使对话继续进行。对话的性质将取决于提供解释的情况和被解释者的目标。例如,被解释者可能是“受训者”,他试图理解解释以学习决策标准,也可能是“分析师”,使用人工智能系统的建议作为政策。
我们 retrain.ai 明白,如果使用得当,人工智能可以让雇主大大加强公正的招聘实践,从而带来多元化、包容性劳动力的明显好处。我们期待进一步完善第 144 号地方法律,以改善不仅在纽约市,而且在我们城市范围之外的招聘实践,因为无数国内外公司通过位于这里的业务运营与纽约市联系在一起,其中许多需要在纽约市的五个行政区内招聘人员。感谢您在对话中加入各种声音。
我们已审查了您根据第 510(k) 条提交的上述器械上市意向通知,并确定该器械与 1976 年 5 月 28 日(即《医疗器械修正案》颁布日期)之前在州际贸易中合法销售的同类器械或已根据《联邦食品、药品和化妆品法案》(法案)的规定重新分类且无需获得上市前批准申请 (PMA) 批准的器械基本相同(就附件中所述的使用指征而言)。因此,您可以根据该法案的一般控制规定销售该器械。虽然本函将您的产品称为器械,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备清单、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不会评估与合同责任担保相关的信息。但我们提醒您,设备标签必须真实,不得误导。
我们已审查了您根据第 510(k) 条提交的上述器械上市前意向通知,并确定该器械与 1976 年 5 月 28 日(即《医疗器械修正案》颁布日期)之前在州际贸易中合法销售的同类器械或已根据《联邦食品、药品和化妆品法案》(法案)的规定重新分类且无需获得上市前批准申请 (PMA) 批准的器械基本相同(就附件中所述的使用指征而言)。因此,您可以根据法案的一般控制规定销售该器械。虽然这封信将您的产品称为器械,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备清单、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不评估与合同责任担保相关的信息。但是,我们提醒您,设备标签必须真实,不得误导。
贸易/设备名称:qXR-BT 法规编号:21 CFR 892.2050 法规名称:医学图像管理和处理系统 监管类别:II 类 产品代码:QIH 日期:2021 年 11 月 22 日 收到日期:2021 年 11 月 24 日 亲爱的 Bunty Kundnani: 我们已审查了您根据第 510(k) 条提交的上市前通知,该通知意在销售上述设备,并已确定该设备与在 1976 年 5 月 28 日(医疗器械修正案颁布日期)之前在州际贸易中合法销售的同类设备基本等同(就附件中规定的用途而言),或与根据《联邦食品、药品和化妆品法案》(法案)的规定重新分类的设备基本等同,这些设备不需要获得上市前批准申请(PMA)的批准。因此,您可以销售该设备,但须遵守该法案的一般控制规定。虽然本函将您的产品称为设备,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备列表、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不会评估与合同责任担保相关的信息。但我们提醒您,设备标签必须真实且不得误导。如果您的设备被归类(见上文)为 II 类(特殊控制)或 III 类(PMA),则可能会受到其他控制。影响您设备的现有主要法规可在《联邦法规》第 21 篇第 800 至 898 部分中找到。此外,FDA 可能会在《联邦公报》上发布有关您设备的进一步公告。请注意,FDA 发布实质等同性判定并不意味着 FDA 已判定您的设备符合该法案的其他要求或其他联邦机构管理的任何联邦法规和规章。您必须遵守该法案的所有
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
AI 学生拓展计划分为 3 个级别,以满足每位学生的 AI 学习需求。每个级别的完成都为学生提供行业认可的证书,以展示他们的成就。达到 3 级的新加坡大学和理工学院学生将有机会与 AI Singapore 的 AI 工程师和 AI 学徒一起在现实世界的项目中实习。
同时,目标的 AR 轮廓符号将基于 UGV 车载视觉传感器的点云,使用 AI 算法合成 AR 数据。AI 还可以执行以下功能:警告倾覆可能性、确定安全路径、检测突然出现的阻碍移动的威胁、标记需要特别注意的区域的视觉警告、分析土壤的高光谱图像以识别其表面的变化(这是简易爆炸装置或地雷的人工伪装的标志)、在自然景观背景下识别伪装。所有此类识别结果都将以 AR 符号的形式呈现。这种合成的 AR 符号可以在没有视频流的情况下发送给 MUM-T 内的指挥所操作员或其他车辆,以最大限度地减少流量,或者与预加载的 AR 符号结合使用以合并到完整视频流中。在这种情况下,有必要解决将车载 AR 数据生成工具与 UGV 架构集成的问题,并在它们与 BMS 的连接集中化程度方面找到一个折衷方案。在 MUM-T 内部这也非常重要。