2.0 2022 年 2 月 使用《国家感染预防和控制手册》 (NIPCM) 方法审查有关空气过氧化氢净化系统的现有科学证据。添加了新建议。
科学研究和分析基于环境机构所做的一切。它有助于我们有效理解和管理环境。我们自己的专家与领先的科学组织,大学和Defra集团的其他部分合作,将最佳知识带入我们现在和将来面临的环境问题。我们的科学工作作为摘要和报告发表,所有人都可以免费获得。本报告是环境局首席科学家小组委托研究的结果。您可以在https://www.gov.uk/government/organisation/environment-agention/oding/atrove中找到有关我们当前的科学计划的更多信息,如果您对该报告或环境机构的其他科学工作有任何评论或疑问,请联系Research@Environment@Environment-Agency.gov.uk.gov.uk.gov.uk。
到了 20 世纪 30 年代,飞机和降落伞的广泛使用使得通过降落伞将轻型步兵部署到敌后成为可能。陆军野战手册 FM 3-90(空降和空中突击作战)的附录 C 涉及空降作战和伞兵。4 伞兵作战在“空降作战”一节中讨论。空降作战的战术梯队包括:突击梯队、后续梯队和后卫梯队。在占领确定空中前沿的目标后,突击梯队确保空降部队、装备和补给的畅通无阻。后续梯队可以包括轻型和重型联合部队。根据指挥官的决定,重型武器可以通过降落伞或空降方式投送。由于防空技术的进步,到 20 世纪 50 年代末,大规模部署空中突击部队的风险越来越大。同时,燃气涡轮运输机运输能力的提高使得空运轻型坦克和自行火炮等重型装备成为可能。随着先进降落伞货物运输系统(低空降落伞提取系统、逆行火箭等)的发展,空降部队增加了一些重型组织单位(例如装甲营),从而提高了战斗力和机动性。从 1980 年代开始,美国第 82 空降师(
空中和太空雷达在民用和军事用途中发挥着重要作用。有许多应用,例如地球观测、监视等。高性能杂波抑制是许多此类雷达系统的重要组成部分。时空自适应处理 (STAP) 已成为杂波抑制应用的热门话题。虽然对于大多数移动目标指示 (MTI) 雷达,其他应用也用于杂波抑制。本硕士论文分析了用于机载雷达应用的双天线配置的 STAP。第一种配置基于辅助天线,第二种配置基于称为离散长球面序列 (DPSS) 的多锥化方法。本文表明,这两种天线配置都是 STAP 应用的有效选择。虽然后一种配置 DPSS 通常具有更高的杂波抑制性能。但是,DPSS 配置的一个问题似乎是该配置存在根本限制。本文简要讨论了这些限制,但在实施 DPSS 配置之前还需要做更多的工作。
摘要。机载雪深雷达观测数据(例如 NASA 的“冰桥行动” (OIB) 任务)最近已用于高度计得出的海冰厚度估计以及模型参数化。在北冰洋西部进行了许多比较机载和现场雪深测量的验证研究,证明了机载数据的实用性。但是,在北极的大西洋地区尚未进行验证研究。最近对该地区进行的观测表明,由于薄海冰上的深雪,雪冰状态发生了显著且主要的转变。在挪威年轻海冰、气候和生态系统 (ICE) 考察 (N-ICE2015) 期间,于 2015 年 3 月 19 日在斯瓦尔巴群岛北部地区进行了一项验证研究。这项研究在 OIB 飞越期间收集了地面真实数据。在二维 (2-D) 400 m × 60 m 网格上获得了雪和冰厚度测量值。从相邻浮冰现场收集的额外雪和冰厚度测量值有助于将在网格调查现场获得的测量值置于更区域性的环境中。由于相对较薄的海冰上普遍存在厚雪的情况,在 N-ICE2015 考察期间观察到了广泛的负干舷和积雪淹没。这些条件导致盐水渗入基底雪层并饱和。这导致机载雷达信号发生更多的弥散散射,从而可以很好地探测到雷达主散射地平线的位置
• 经过十多年的测试,专利的 ActivePure ® 技术已被证明可以减少 99.9% 以上的许多常见空气和表面污染物,包括病毒、细菌、霉菌、真菌、挥发性有机化合物、烟雾、过敏原和气味
当前美国经济的复苏取决于保持社交距离,尤其是“六英尺规则”,这项准则对于防止室内空间中不断混合的载有病原体的气溶胶飞沫几乎无法起到保护作用。如今,人们已广泛认识到 COVID-19 空气传播的重要性。虽然最近已经开发出风险评估工具,但尚未提出任何安全准则来防范这种传播。我们在此基于空气传播疾病的模型,以得出室内安全准则,该准则将对“累积暴露时间”设定上限,即居住者人数与其在封闭空间中待的时间的乘积。我们展示了这个界限如何取决于通风和空气过滤率、房间尺寸、呼吸频率、居住者的呼吸活动和口罩使用情况以及呼吸道气溶胶的传染性。通过综合最具代表性的室内传播事件的可用数据和呼吸道飞沫大小分布,我们估计感染剂量约为 10 个气溶胶传播的病毒体。因此,可以推断新病毒(严重急性呼吸综合征冠状病毒 2 [SARS-CoV-2])的传染性比其前身(SARS-CoV)高一个数量级,这与 COVID-19 的大流行状态一致。针对教室和养老院提供了案例研究,并提供了电子表格和在线应用程序以方便使用
摘要。我们评估了在蒙古某铜矿床环境中,一种新型系统像素清晰校准场在航空高光谱矿物测绘中应用的机会和性能。校准场旨在用于估计特定地质场景中单个像素中关键矿物的灵敏度和量化。校准场的布局由两种不同的含铜岩石样品、一种来自矿山的低铜含量岩石材料、来自矿山的尾矿材料和具有明确已知光谱特征的校准材料组成。样品材料的缩放覆盖范围旨在开发统计方法,以基于像素的方法量化航空调查中的目标矿物。数据收集包括使用地球化学、X 射线衍射以及微观和电子光栅微观方法描述校准材料。使用可见光和近红外机载传感器以及短波红外机载传感器,从六个高度多次重复收集校准场的数据。经过像元校正和大气校正后,对1400、1900、2200nm处黏土矿物的吸收特征进行了精确测量和统计分析,给出了覆盖率与吸收特征特别是在2200nm附近的相关性,以及飞行高度对探测灵敏度的影响和
接到法国军备总局 (DGA) 的通知,泰雷兹公司正与空中客车直升机公司合作开展将 AirMaster C 集成到 Guépard 直升机上的前期研究。这是未来的轻型联合陆军直升机,将为法国三支军队执行各种任务。“我们很自豪地推出泰雷兹机载监视雷达系列的最新成员 AirMaster C,它满足当前和未来的所有作战要求。凭借这款新产品,泰雷兹公司为更广泛的平台类型和运营商提供了优化的监视解决方案,确保他们在面对未来新挑战时受益于最高水平的任务性能。” 泰雷兹公司情报、监视和侦察 (ISR) 副总裁 Hervé Hamy 说道。
1 斯坦福大学地球系统科学系,美国加利福尼亚州斯坦福;2 劳伦斯伯克利国家实验室地球与环境科学区,美国加利福尼亚州伯克利;3 加州理工学院喷气推进实验室,美国加利福尼亚州帕萨迪纳;4 国家生态观测网络,美国科罗拉多州博尔德;5 落基山生物实验室,美国科罗拉多州克雷斯特德比特;6 加利福尼亚大学环境科学、政策与管理系,美国加利福尼亚州伯克利;7 刘易斯堡学院环境与可持续发展系,美国科罗拉多州杜兰戈;8 亚利桑那州立大学生命科学学院,美国亚利桑那州坦佩;9 谷歌公司,美国加利福尼亚州山景城;10 美国地质调查局、地球科学与环境变化科学中心,美国科罗拉多州丹佛;11 SLAC 国家加速器实验室,美国加利福尼亚州门洛帕克