摘要:士兵作为高效的推土机,在最近关于人类世地貌学的辩论中,可以被视为景观变化的重要地貌驱动因素。由军事活动产生的“极地形态”与一组大小和几何形状各异的人造地貌相对应。它们在第一次世界大战凡尔登战场(法国)尤为常见,该战场是西线最大的消耗战之一。那场战役中的炮击和防御阵地的建设极大地改变了地貌,造成了数以千计的弹坑、掩体和炮位,改变了中、微地形。本文提出了一种创新方法,利用机载 LiDAR 在整个战场上获取的数字地形模型 (DTM),对这些小规模冲突引起的地貌(不包括战壕等线性特征)进行详尽清点。使用 Kohonen 的自组织映射 (SOM) 和分层凝聚聚类 (HAC) 进行形态分析,以量化和分类大量战争地貌。这种组合方法可以绘制超过一百万个地貌,这些地貌可分为八种不同的形状,包括弹坑和各种士兵制造的地貌(即掩体、炮位等)。使用现场观察进行的检测质量评估表明,该算法成功分类了 93% 的弹坑和 74% 的人类建造的地貌。最后,所制作的图像数据库和地图系列将帮助考古学家和林业工作者更好地管理凡尔登历史遗址,该遗址如今被约 10,000 公顷的大森林覆盖。© 2019 John Wiley & Sons, Ltd.
NINA 出版物 NINA 报告 (NINA Rapport) 这是 NINA 向客户报告已完成的研究、监测或审查工作的常用形式。此外,该系列还将包括研究所的许多其他报告,例如研讨会和会议报告、内部研究和审查工作结果以及文献研究等。在适当的情况下,NINA 报告也可以以第二语言发布。NINA 特别报告 (NINA Temahefte) 顾名思义,特别报告涉及特别主题。特别报告是根据需要制作的,该系列的范围很广:从系统识别关键到有关社会重要问题领域的信息。NINA 特别报告通常采用流行的科学形式,与 NINA 报告相比,其插图更重要。NINA 概况介绍 (NINA Fakta) 概况介绍的目的是让公众快速轻松地获取 NINA 的研究成果。概况介绍简要介绍了我们一些最重要的研究主题。其他出版物 除了在 NINA 自己的系列中报道外,该研究所的员工还在国际期刊、科普书籍和杂志上发表了大部分科学成果。
本特别报道的目的是记录在位于北卡罗来纳州达克的美国陆军工程兵团实地研究设施的沿海环境中从无人机载系统 (UAS) 获取的高空间分辨率图像数据的收集情况,以评估各种软件处理包的地理空间精度。使用固定翼 SenseFly eBee 无人机平台收集了来自两次任务(一次飞行于 2015 年 10 月,第二次飞行于 2016 年 9 月)的图像数据。使用了四种商业处理包来生成标准地理空间产品,包括数字表面模型和正高马赛克。通过分布在 70 公顷场地上的 11 个检查站评估地理空间精度。结果表明,精度因软件包而异,这可能部分与摄影测量处理方法有关。三维均方根误差范围为 0.54 至 0.06 米。该研究还表明,在尝试评估沿海环境中 UAS 平台的地理空间精度时,图像采集策略、摄像机参数设置和地面控制点/检查点设计的重要性。
首字母缩略词和缩写列表 A2AD 反介入区域拒止 AESA 有源电子扫描阵列 AFRL 空军研究实验室 AJ 抗干扰 ALE 自动链路建立 AOR 责任区 ASARS 先进合成孔径雷达系统 ASAT 反卫星 ARGOS 先进侦察地理空间轨道系统 ATR 自动目标识别 BLOS 超视距 BMC2 战斗管理指挥和控制 C4ISR 指挥、控制、通信、计算机、情报、监视和侦察 COP 通用作战图 COSS 天体瞄准系统 DCGS 分布式通用地面系统 DE 定向能 DOD 国防部 DODIN 国防部信息网络 ECCT 企业能力协作小组 EM 电磁 EWS 电子战系统 FMV 全动态视频 GPS 全球定位系统 HF 高频 I&W 指示和警告 IA 信息保障 IFDL 飞行中数据链 IMINT 图像情报 IP 互联网协议 ISR 情报、监视和侦察 JUON 联合紧急作战需求 LEO 低地球轨道 LLAN 低拦截概率、低检测概率、抗干扰网络 LO 低可观测 LOS 视距 LPD 低检测概率
Aerospace America (ISSN 0740-722X) 由美国航空航天学会每月出版,地址为 1801 Alexander Bell Drive, Reston, Va. 20191-4344 [703/264-7577]。订阅费率为 AIAA 会员会费的 50%(不可从中扣除)。非会员订阅价格:美国和加拿大 163 美元,外国 200 美元。单份 20 美元。邮政局长:将地址变更和订阅订单发送至上述地址,收件人为 AIAA 客户服务部,703/264-7500。定期邮资在弗吉尼亚州赫恩登和其他邮寄处支付。版权所有 © 2010 美国航空航天学会,保留所有权利。Aerospace America 名称由 AIAA 在美国专利商标局注册。本期印刷了 40,000 份。这是第 48 卷,第 3 期。
到 2017 年底,欧洲航天局 (ESA) 将发射大气激光多普勒仪器 (ALADIN),这是一种在 355 nm 下工作的直接检测多普勒风激光雷达。ALADIN 机载演示器 A2D 是使用真实大气信号验证和优化 ALADIN 硬件和数据处理器进行风检索的重要工具。为了能够验证和测试 ALADIN 的气溶胶检索算法,需要一种从 A2D 检索大气后向散射和消光轮廓的算法。A2D 采用直接检测方案,使用双法布里-珀罗干涉仪测量分子瑞利信号,使用菲索干涉仪测量气溶胶米氏回波。信号由累积电荷耦合器件 (ACCD) 捕获。这些规范使得信号预处理中的不同步骤成为必要。本文描述了从 A2D 原始信号中检索气溶胶光学产品(即粒子后向散射系数 β p 、粒子消光系数 α p 和激光雷达比 S p )所需的步骤。
三维制图,因为它提供了快速的数据采集速度和前所未有的精度。本研究提出了一种从 2015 年马来西亚博特拉大学获取的机载激光扫描数据中准确提取和在三维空间中建模的方法。首先,将点云分为地面和非地面 xyz 点。地面点用于生成数字地形模型 (DTM),而数字表面模型 (DSM) 则由整个点云生成。从 DSM 和 DTM,我们获得了代表地形表面上方特征高度的规范化 DSM (nDSM)。此后,通过分层堆叠将 DSM、DTM、nDSM、激光强度图像和正射影像组合为单个数据文件。集成数据后,使用基于对象的图像分析将其分割为图像对象
针对机载光电系统探测性能难以评估的问题,本文提出了一种红外与微光传感器目标信息融合检测概率的定量计算方法,从目标与背景的辐射特性、探测器的传输特性和成像特性3个方面分析了影响目标检测概率的因素,建立了目标信息融合检测概率计算模型,基于模糊贝叶斯网络理论,根据机载光电传感器目标特点及威胁效果,给出了目标威胁评估的模糊贝叶斯网络模型。实验结果表明,当融合质量因子小于1时,融合图像的质量与源图像相比有所下降;通过贝叶斯网络算法得到了目标威胁,对威胁评估过程的仿真证明了模型的有效性和结果的可靠性。所提出的方法可以计算机载光电系统图像融合的目标检测概率,并对目标威胁进行评估。 (2017年3月30日收到;2017年10月10日接受)关键词:目标信息融合,检测概率,威胁评估,机载光电
R5A 包括完整的收发器功能,这意味着它可以接收范围内所有 AIS 单元的消息,也可以传输来自飞机的选定信息。传输能力对于 SAR 操作、机队管理甚至监视飞行等任务特别有用,在这些任务中,偶尔需要显示自己的位置或询问选定的船只以获取更多数据。在 Saab 的可选安全 AIS 模式下操作时,传输也是功能的重要组成部分。