“EUR/SAM 走廊空域概念规划”与任何长期规划一样,都是通过初步考虑和假设制定的,必须不断监测和评估这些因素。观察和跟踪可能影响项目的主要关键参数是估计时间和“日常”情况如何影响计算收益的唯一方法,因此可能会对计划进行必要的修改,以避免偏差并重新考虑里程碑甚至目标。需要提醒的是,正如在背景部分中看到的那样,关于走廊 RNP4 的初步提案出现在 2009 年 SAT14(佛得角)期间,当时的条件和情况推动了该提案,可能应该在七 (7) 年后进行修订和更新。2.背景
通信。联邦航空管理局将从模拟语音和商业服务提供商数据链路通信过渡到集成数字通信能力。第一阶段的数据链路通信将随着新应用的测试而发展。数据链路的实施将减少语音信道拥塞并增加每个甚高频 (VHF) 频率的容量。在第二阶段,联邦航空管理局将开始用数字无线电(下一代空地通信系统 (NEXCOM))取代其模拟空地无线电基础设施。NEXCOM 无线电提供数字语音和数据通信的能力将在第二阶段和第三阶段逐步实现。地地操作和管理通信系统将合并为一个集成的地面数字电信系统。
1.4。在繁忙的机场中,空中交通流量管理(ATFM)是必要的。ATFM通过确保尽可能最大程度地利用机场容量来为安全,有序和迅速的空中流量做出贡献,并且交通量与适当的ATS权威宣布的容量兼容6。ATFM旨在确保在需求期望超过ATC系统的可用容量时确保最佳的交通流量。ATC容量反映了系统提供服务的能力,并在给定时间7中进入了空域的指定部分的飞机数量。ATZ被归类为B类空域,允许VFR和IFR流量。虽然IFR到达受到ATFM的插槽和流量控制,但VFR航班并非如此。入站和出站VFR航班受塔控制器的判断。因此,它为塔控制器增加了工作量。VFR飞机不受控制的流动机场可能会抵消疲劳管理,从长远来看,这可能是有害的,并且安全危险。ATC的认知和操作过程不仅根据所控制的飞机数量而异,而且还根据要解决的问题的数量和复杂性8。空中交通管制员报告的主要压力来源既连接到手术方面和组织结构。对于前者来说,最重要的是交通负荷,时间压力,限制和设备可靠性的峰值。后者主要涉及转移时间表,角色冲突,不利的工作条件以及对工作的缺乏控制9。
本文件包含六个部分。第 2 部分描述了 NAS 中 UAS 的当前操作。第 3 部分描述了这些操作的能力不足并提供变更的理由。第 4 部分介绍了集成 UAS 的未来 NAS 概念。本节涉及所有 UAS 操作,但仅在机组人员的视线 (VLOS) 内运行的小型 UAS(重量小于 55 磅的飞机)除外。第 5 部分介绍了各种 UAS 类型在所有空域等级内的运行场景。第 6 部分从 FAA 和 NAS 用户的角度总结了 UAS 集成的预期影响。第 6 部分还研究了此概念与其他 NextGen 概念文件的关系。
3.1.1 澳大利亚空域分类符合国际民用航空组织 (ICAO) 附件 11,包括 A、C、D、E 和 G 类,具体取决于安全有效地管理航空活动所需的服务级别。B 类和 F 类空域目前未在澳大利亚使用。每种空域类型决定了该空域允许的航空作业类型和性质。G 类空域主要由不需要监视、分离或导航协助的目视飞行规则 (VFR) 飞机使用。VFR 飞机通常在天气良好和白天飞行,因此它们可以使用地面上的视觉参考进行导航。在 A 类空域运行的飞机主要是按照仪表飞行规则 (IFR) 运行的大型客机,这些飞机与所有其他飞机保持间隔。在 C、D 和 E 类空域内飞行的飞机将获得管制和监视服务,并采用 VFR 和 IFR 混合操作。附件 B 提供了澳大利亚使用的空域类别的详细信息。
1.10 考虑到政府指定的 2040 年时间表,CAA 将不断审查 AMS 的背景,并在必要时通过 AMS 治理结构利用适当的工作对其进行更新。这尤其适用于包含交付要素的 AMS 第 2 和第 3 部分,因为技术创新即将出现或变得无处不在,政策或监管框架中出现了影响交付的漏洞,或者政府已发出即将或大规模制定政策的信号。AMS 第 1 部分还列出了需要更多工作的战略领域。
轨迹规范是一种指定具有公差的飞机轨迹的方法,使得飞行中任何给定时间的位置都被限制在精确定义的边界空间内。边界空间由相对于参考轨迹的公差定义,该参考轨迹将位置指定为时间函数。公差是动态的,基于飞机导航能力和交通状况。轨迹规范可以保证在任意时间段内的安全分离,即使在空中交通管制 (ATC) 系统或数据链路发生故障的情况下也是如此。它可以帮助实现 ATC 自动化所需的高安全性和可靠性,并且可以减少正常运行期间对战术 ATC 备用系统的依赖。本文介绍了用于检测和解决服务于主要机场的终端空域中指定轨迹之间冲突的算法和软件。在对主要终端空域全天交通的快速模拟中,所有冲突都几乎实时得到解决,证明了该概念的计算可行性和初步操作可行性。
信息时代的发展与军事技术的革命相结合,深刻影响了战场的深度、广度和高度。在当今的作战环境中,友军和敌军通过火力和机动获取和控制对方的能力通过有效利用电磁频谱得以最大化。在我们这个技术时代,瞄准能力几乎每天都在呈指数级增长。尽管扩大战场在整个战争历史中都在发展,但太空和机载平台已经提高了指挥官可视化战场、瞄准敌人以及处理和分发信息的能力,超出了 20 世纪的任何预期。21 世纪的技术对空域的使用提出了越来越高的要求。空域已成为一种关键资源,随着空域用户数量和类型的增加,作战指挥官必须有效管理它。
满足日益增长的交通需求是林肯实验室自 20 世纪 70 年代初以来一直在应对的重要挑战。实验室最近的成就包括开发交通警报和防撞系统 (TCAS) [3],该系统在飞行员面临空中相撞危险时向他们发出警告,以及跑道状态灯系统 [4],并定义支持飞机分离标准所需的监视性能要求 [5]。此外,联邦航空管理局的下一代航空运输计划 (NextGen) 正在开发新技术和程序,以提高空中交通流量效率和安全性。国防部和国土安全部也越来越有兴趣将无人机安全引入 NAS。在每种情况下,都需要新的传感器和自动化系统概念来防止空中相撞,同时不干扰空中交通运营的快节奏。
理论为军事组织提供了统一的努力和共同的理念、语言和目的。本陆军战术、技术和程序 (ATP) 为空域管理 (ADAM) 单元操作提供了理论指导和使用 TTP。本 FM 的目的是提供有关 ADAM 单元的结构、训练、战术使用和操作的理论。军团、师、旅战斗队 (BCT)(重型、步兵和斯瑞克)和五个支援旅(航空、火力、战场监视旅 [BfSB]、战斗支援旅 [CSB]、机动增强 [ME] 和维持)中都有 ADAM 单元。除了 ADAM 单元,重型旅战斗队 (HBCT) 和步兵旅战斗队 (IBCT) 还配备了旅航空部队 (BAE),被称为 ADAM/BAE。在军和师指挥级别,TAC(战术)指挥所 (CP) 中有 ADAM 单元,被称为防空反导 (AMD) 单元。FM 3-01.50 为 Stryker 旅战斗队 (SBCT) 和支援旅中的 ADAM 单元的战术运用提供了基本战术、技术和程序 (TTP),概述了分配给 HBCT 和 IBCT 作为一个统一单元的 ADAM/BAE 以及更高层级单位的 AMD 单元在操作上的差异。本出版物— • 为负责在公司/师、BCT 和支援旅中执行(计划、准备、执行和评估)行动的指挥官、参谋和组织领导人提供理论指导。• 为制定理论(基本原则和 TTP)、物资和部队结构、机构和单位训练以及 ADAM 单元行动的常设操作程序 (SOP) 的人员提供权威参考。它不涵盖部署;接收、准备、前进和整合 (RSOI);或重新部署行动。• 描述旨在用作指南且不应被视为不灵活的程序。战斗中的每种情况都必须通过对本手册中规定的理论的明智解释和应用来解决。该理论基于先前制定的理论以及参加战斗训练中心 (CTC) 轮换和伊拉克自由行动 (OIF)/持久自由行动 (OEF) 的部队和领导人的建议、见解和观察。• 针对的是 BCT 指挥官、他的参谋、下属指挥官和所有支援部队。本手册反映并支持 ADP 3-0、ADP 5-0、ADP 6-0、FM 3-90 和 FM 3-90.6 中涵盖的陆军作战理论。它并非 ADAM 单元作战的独立参考;相反,它旨在与这些和其他现有理论资源结合使用。• 概述了所有三种类型的防空和空域管理(ADAM 单元、ADAM/BAE 和 AMD 单元)将作为军/师、BCT 或支援旅的一部分运作的框架。本手册还包括适用于特定类型单位的理论讨论,例如 SBCT 的 BfSB。