许多作者考虑了用于分析来自杂种种群数据的设计(例如Neimann-Sprensen和Robertson,1961年; Soller和Genizi,1978年; Geldermann等,1985; Weller等,1990)。这些方法的缺点是他们一次使用来自单个MARIRW的信息。没有标记将具有统一性的杂合性,因此对于任何给定的标记,有些父亲都会是纯合的,因此是非信息的。这会浪费信息,并在QTL的估计位置中引入偏差可能会有更大的问题。此外,提出的最小二乘方法不能单独估计任何检测到的QTL的位置和效果。最大似然(ML)方法(Weller,1986; Knott and Haley,1992a)可以估计这两种效果,但是通常仅使用单个标记(Weller,1986; Knott; Knott and Haley,1992a and B)估计,位置与标记相对(I.E.可以是它的任何一侧)。
2. 该项目将包括建造、运营和维护一个小堰,该堰将把怀塔哈河的一部分引流到一条 1.5 公里长的隧道中,该隧道将水从进水口输送到发电站。被引流的水将返回怀塔哈河。受引流影响的怀塔哈河河段长 2.6 公里,包括摩根峡谷。项目投入运营时,怀塔哈河的最低流量将保持在 3.5 立方米/秒。在怀塔哈路的尽头、穿过麦格雷戈溪和怀塔哈河北岸到发电站之间需要一条通道。这条道路将为隧道、发电站和相关结构的建设而修建,并在项目投入运营后进行维护。一条 66 kV 输电线路将沿着通往保护区内麦格雷戈溪的通道,将电力从该项目输送到 6 号国道上的配电连接点。除了麦格雷戈溪以外,通往 6 号国道的输送路线(包括可能穿过怀塔哈河)还有待进一步调查。
Colossal 的标志性复活灭绝项目将是复活猛犸象,或者更具体地说,复活一头具有猛犸象所有核心生物学特征的耐寒大象。它将像猛犸象一样行走、看起来像猛犸象、听起来像猛犸象,但最重要的是,它将能够栖息在猛犸象灭绝后遗弃的生态系统中。
锚点(Coccinia abyssinica(Lam。)Cogn。)是一种土著根作物,用作埃塞俄比亚的食品和营养安全和社会经济上重要的农作物。尽管该作物具有巨大的潜力,但该国的研究和开发业上给予了较低的关注。事件尽管很少有关于锚定在几个加入的遗传多样性的研究,但本研究包括来自巨大生产领域的更多加入。使用定量性状进行了本研究,以评估埃塞俄比亚锚定400种锚定的遗传多样性。现场试验以三个复制的随机三重晶格设计进行了规定。收集了22个定量性状的数据,并进行了方差和多变量分析的分析。方差分析的结果表明,除了每个水果的位置数量和每个果实的6个位置,所有特征在附属中均显示出显着的变化(p <0.01)。在所有根特征的加入中都展示了宽范围;每植物(1-13),植物根重量(0.02-3.52 kg),总砧木(1.67-293.33 t/ha),根长度(6.4-30.08 cm),根宽度(6.09-33.16 cm)和根干重(12.9-55g/100g)。同样,果实和种子特征也表现出宽阔的范围。在根特征之间产生最高的正相关和显着相关性;总根产量(r = 0.37 **,根直径(r = 0.34 **)。根产量与种子产量(-0.001)负相关,但果实的长度与所有根特征呈正相关。聚类分析表明存在五个不同的群体,在这些群体中,它们的收集区域有多样化和各种不同。主成分分析(PCA)的结果表明,将附件分为七个基于评估的特征,即显着(特征值> 1),并解释了总变异性的55.08%。本实验中表现出的变异可以归因于环境和遗传因素。在埃塞俄比亚的锚固种质之间表现出的变异性将是在未来工作中筛选和选择锚定基因型的出色方法。
在现代植物育种中,基因组选择已成为选择仅部分表型的大型繁殖种群中的优质基因型的黄金标准。许多育种计划通常依赖于单核苷酸多态性(SNP)标记来捕获全基因组的选择候选数据。为此,具有中等至高标记密度的SNP阵列代表了一种强大且具有成本效益的工具,可从大规模繁殖群体中生成可重现,易于处理的高通量基因型数据。但是,SNP阵列容易出现导致等位基因呼叫失败的技术错误。为了克服这个问题,基于失败的SNP调用纯粹是技术性的,通常会估算失败的呼叫。但是,这忽略了失败调用的生物学原因,例如:缺失 - 越来越多的证据表明基因存在 - 缺失和其他类型的基因组结构变体可以在表型表达中发挥作用。由于缺失通常不与其弯曲的SNP不平衡,因此缺少SNP调用的排列可能会掩盖有价值的标记 - 性状关联。在这项研究中,我们使用四个参数和两个机器学习模型分析了为低油菜籽和玉米分析的数据集,并证明基因组预测中的等位基因调用失败对重要的农艺性状具有很高的预测。我们根据种群结构和连锁不平衡提出了两个统计管道,这使可能由生物学原因引起的失败SNP调用过滤。对于所检查的人群和特征,基于这些过滤的失败等位基因调用的预测准确性与基于标准SNP的预测具有竞争力,这是基因组预测方法中缺失数据的潜在价值的基础。SNP与所有失败的等位基因调用或过滤等位基因调用的组合并不能以基于基因组关系估计的冗余性而获得的基于SNP的预测的预测均超过预测。
微生物刺激素可作为生物和非生物胁迫保护剂和生长促进剂,在气候变化的背景下,在农业中也变得越来越重要。寻找能够在各种田间条件下帮助减少化学投入的新产品是新的挑战。在这项研究中,我们测试了两种具有互补作用模式的微生物生长促进剂(Azotobacter chroococcum 76A 和 Trichoderma afroharzianum T22)的组合是否可以帮助番茄适应最佳水和氮需求减少 30% 的情况。在最佳水和营养条件下,微生物接种物可提高番茄产量 (+48.5%)。此外,微生物应用提高了胁迫条件下的叶片水势 (+9.5%),降低了叶片整体温度 (-4.6%),并增加了地上部鲜重 (+15%),表明该组合可在有限的水和氮供应下充当植物水分关系的积极调节剂。在胁迫条件下施用 A. chroococcum 76A 和 T. afroharzianum T22 可显著增加根际微生物种群,这表明这些接种物可增强土壤微生物丰度,包括本地有益微生物的丰度。采样时间、有限的水和氮状况以及微生物接种均会影响根际土壤中的细菌和真菌种群。总体而言,这些结果表明,所选微生物群落可作为植物生长促进剂和胁迫保护剂,可能通过土壤微生物多样性和相对丰度的功能性变化触发适应机制。
早期疫病(EB),由linariae(Neerg。)(SYN。A。tomatophila)Simmons是一种影响世界各地的西红柿(Solanum lycopersicum L.)的疾病,具有巨大的经济影响。本研究的目的是绘制与西红柿中EB耐药性相关的定量性状基因座(QTL)。F 2和F 2:3的映射种群由174条线组成,这些群体在2011年的自然条件下评估了NC 1celbr(抗性)×Fla。7775(易感性),并通过人工接种在2015年的温室中进行了自然条件评估。总共使用了375个具有特定PCR(KASP)测定法的基因分型父母和F 2种群的分析。表型数据的广泛遗传力估计为2011年和2015年的疾病评估分别为28.3%和25.3%。QTL分析显示,六个QTL与染色体2、8和11(LOD 4.0至9.1)上的EB抗性相关,解释了3.8至21.0%的表型变异。这些结果表明,NC 1celbr中EB耐药性的遗传控制是多基因的。这项研究可能有助于将EB抗性QTL和标记辅助选择(MAS)进一步绘制,以将EB耐药基因转移到精英番茄品种中,包括扩大番茄中EB耐药性的遗传多样性。
本综述总结了对植物育种中定量性状的仿真研究的发现,并将这些见解转化为实际方案。作为农业生产力面临着越来越多的挑战,植物育种对于解决这些问题至关重要。模拟使用数学模型来复制生物条件,桥接理论和实践,通过验证假设早期并优化遗传增益和资源使用。虽然策略可以提高特质价值,但它们会降低遗传多样性,从而结合方法。研究强调了将策略与性状遗传力和选择时间保持一致的重要性,并保持遗传多样性,同时考虑基因型 - 环境相互作用,以避免早期选择中的偏见。在精确的标记放置时,使用标记会加速繁殖周期,前景和背景选择是平衡的,并且有效地管理了QTL。基因组选择通过缩短育种周期和改善父级的选择来增加遗传增长,尤其是对于低遗传力性状和复杂的遗传结构而言。定期更新培训集至关重要,无论遗传结构如何。贝叶斯方法在较少的基因和早期的繁殖周期中表现良好,而BLUP对于具有许多QTL的性状更为强大,而RR-Blup在不同条件下证明了灵活性。有明确的目标和足够的种质可用时,较大的人群会带来更大的收益。准确性在几代人中下降,受到遗传结构和人口规模的影响。对于低遗传力性状,多特征分析提高了准确性,尤其是与高遗传力性状相关时。更新包括表现最佳的候选人,但保存可变性可提高提高和准确性。低密度基因分型和插补为高密度基因分型提供具有成本效益的替代方法,从而获得了可比的结果。靶向种群优化遗传关系,进一步提高准确性和繁殖结果。评估基因组选择揭示了短期收益与长期潜力和快速循环基因组计划之间的平衡。多样化的方法保留了稀有等位基因,实现了显着的收益并保持多样性,并突出了在优化繁殖成功方面的权衡。
5.1.1 作为一家消费者信托公司,我们努力确保连接成本公平合理,因为如果价格和/或服务水平不一致,反馈回路会非常强大且立即生效。我们的消费者可以通过直接向企业反馈、通过我们的受托人(作为我们消费者的代表)以及最终通过信托选举来表达他们对 Network Waitaki 绩效的看法,其中绩效的评判标准是受托人是否连任以及是否出现两极分化问题。