本报告展示了 Energi x 对环境、社区、员工和其他关键利益相关者的承诺。2021 年是 Energi x 取得长足进步的一年。随着我们业务的出色增长和扩张,我们继续投资于与 ESG 相关的绩效和活动。我们已设定了 12 个雄心勃勃的 ESG 目标,以确保我们的愿景达到最高标准。这些目标涵盖了从应对气候变化、促进性别平等到投资当地社区等一系列问题。制定这些目标反映了我们对负责任行为和尊重所有利益相关者的真诚承诺。我们将在后续报告中继续报告我们在实现这些目标方面取得的进展,并期待与您分享这一进展。
摘要。Noise 是一个框架,用于设计和评估双方之间的认证密钥交换 (AKE) 协议,该协议使用 Diffie-Hellman (DH) 作为唯一的公钥密码系统。在本文中,我们对 Noise 和 PQNoise(最近推出的后量子版本的 Noise 协议框架)的计算和通信成本进行了评估。此外,我们介绍了 12 种基本(交互式)Noise 模式及其 PQNoise 对应模式的组合,从而获得混合握手模式,并将它们纳入我们的评估中。我们将 PQNoise 和新的混合模式集成到 Noise-C 中,这是用 C 编写的 Noise 协议框架的参考实现。为了评估 Noise 及其变体,我们使用 Linux 网络模拟工具模拟了具有不同延迟、吞吐量和数据包丢失设置的网络。对于所有 Noise 握手,我们选择了提供可比(量子前)安全级别的密码系统,即 X25519 和 Kyber512。我们在两台不同的设备上进行了实验,一台是搭载 Intel Core i5-10210U CPU 的笔记本电脑,另一台是搭载 32 位 ARM Cortex-A7 处理器的 Orange Pi One 开发板。我们收集的结果表明,在正常网络条件下,Noise 模式和 PQNoise 对应模式的执行时间几乎相同,除非后者需要额外的握手消息。然而,在网络条件较差、数据包丢失率较高的情况下,PQNoise 落后于 Noise,这主要是因为 Kyber512 的公钥和密文相对较大。当数据包丢失率较低时,我们的混合握手的执行时间与相应的 PQNoise 握手几乎没有区别,而在数据包丢失率较高时,差异很小。
WAUU地区董事会成员对我们地区居民的居民印象深刻。 div>我们想欣赏社区组织,我们的农业和房屋的大量交易。 div>我们的环境在志愿者和实践中的作用有效,例如Emeromats Envoryge Trust,Whau River Cratement Trust和Wildlink。 div>我们还感谢我们的不同社区已经参与了Pasifik委员会和Whau族裔集体。 div>Wharetu区域地图反映了我们的支持,并与这些过程和其他组织相处,使WAUU地区对每个人都变得更好。 div>
室温钠硫 (RT Na-S) 电池具有高理论能量密度和低成本的特点,最近因潜在的大规模储能应用而受到广泛关注。然而,多硫化钠的穿梭效应仍然是导致循环稳定性差的主要挑战,这阻碍了 RT Na-S 电池的实际应用。在此,设计了一种多功能混合 MXene 中间层以稳定 RT Na-S 电池的循环性能。混合 MXene 中间层包括大尺寸的 Ti 3 C 2 T x 纳米片内层,随后是玻璃纤维 (GF) 隔膜表面的小尺寸 Mo 2 Ti 2 C 3 T x 纳米片外层。大尺寸的 Ti 3 C 2 T x 纳米片内层为可溶性多硫化物提供了有效的物理阻挡和化学限制。小尺寸的 Mo 2 Ti 2 C 3 T x 外层具有出色的多硫化物捕获能力,并加速了多硫化物转化的反应动力学,这是由于其优异的电子电导率、大的比表面积和富含 Mo 的催化表面。因此,采用这种混合 MXene 夹层改性玻璃纤维隔膜的 RT Na-S 电池在 1 C 下在 200 次循环中提供稳定的循环性能,容量保持率提高了 71%。这种独特的结构设计为开发高性能金属硫电池的基于 2D 材料的功能夹层提供了一种新颖的策略。
政治经济学这一概念源于希腊语“politikos”和“oikonomia”,前者代表国家和社会,后者代表家庭经济管理。1 上述两个概念合在一起,就是“国家管理的规律”。因此,政治经济学是社会科学中的一门分支学科,是研究国家内部物质利益的生产、分配、交换和消费过程中人们之间社会关系的科学学科。阿克指出,虽然政治经济学现在已成为政治科学的一个分支学科,但它最初实际上是马克思列宁主义意识形态的一个组成部分。2 因此,可以说,自从资本主义生产方式出现以来,政治经济学一直是一门阶级科学。它研究社会生产制度、生产过程中人们之间的经济关系以及人类发展各个阶段物质价值的生产、分配和交换规律。作为一门阶级科学,政治经济学派的代表始终代表着特定阶级的利益,并试图为符合该阶级利益、保护该阶级的经济政策辩护。因此,政治经济学研究生产关系与生产力和上层建筑之间的复杂相互作用。本研究试图更深入地理解马克思的历史唯物主义和辩证唯物主义、社会分类和阶级分析、基础上层建筑和生产力。
目标 1.5:Anestis Trypitsidis 和 Haris Kontoes(雅典国家天文台) 目标 6.3:Steve Greb(威斯康星大学麦迪逊分校、GEO AquaWatch)、Benjamin Koetz (ESA)、Kerstin Stelzer(Brockmann Consult)、Mark Matthews Cyanolakes ) 目标 6.4:安娜玛丽Klasse 和 Steven Wonink (ELEAF)、Jippe Hoogeveen、Riccardo Biancalan 和 Livia Peiser (FAO)、Benjamin Koetz (ESA) 目标 6.6:Ake Rosenqvist(全球红树林观察)、Lisa Robelo (CGIAR)、Michael Riffler (Geoville)、Jean- Francois Pekel (EC JRC) 目标 7.1:Miguel Roman (NASA)、Paul Stackhouse (NASA) 目标 11.1:Richard Sliuzas (ITC)、Tomas Soukup (GISAT) 目标 11.2:Sharon Gomez 和 Amelie Broszeit (GAF AG) 目标 11.3:Thomas Esch 和 Felix Bachofer (DLR)、Christian Tøttrup ( DHI GRAS)目标 11.5:Sharon Gomez (GAF AG) 目标11.6:Claus Zehner (欧空局) 目标 11.7:Stefan Kleeschulte (space4environment)、Mirko Gregor (space4environment)、Tomas Soukup (GISAT)、Diana Rocío Galindo González (IAEG-SDGs WGGI,哥伦比亚) 目标 14.1:Emily Gordon (NOAA)、Sordon (NOAA)坎贝尔(欧空局),蒂特。 Kutser (塔尔图大学)、Giulio Ceriola (Planetek)、Sami Djavidnia (EMSA)、Mads Christensen (DHI GRAS) 目标 14.3:Peter Land (PML)、Roberto Sabia (ESA)、Shuba Sathyendranath (PML)、Mads Christensen (DHI GRAS) ) ) 目标 15.1:Christophe Sannier (SIRS)、Inge Jonckheere (FAO)、Frank Martin Seifert (ESA) 目标 15.2:Frank Martin Seifert (ESA) 目标 15.3:Neil Sims (CSIRO)、Alex Zvoleff (CI) 目标 15.4:Davnah Payne 和 Juerg Krauer(伯尔尼大学)、Carolina Adler(GEO-GNOME、核磁共振成像)
3 “与这些例子一样,Eighmy 法官决定亲自护送孩子们去监狱,这让本来应该属于司法行为的行为变得太过分了……然而,Eighmy 法官越界了,他亲自护送孩子们去监狱,站在那里看着他们脱掉衣服和物品,一小时后又亲自回来释放他们。首先,孩子们甚至不在法庭上,所以他不能以‘扰乱秩序、蔑视或无礼行为’为由指控他们藐视法庭。其次,法官并不兼任狱吏。因此,即使假设 Eighmy 法官可以命令其他人将孩子们送进监狱,他也不能亲自把他们送进去。Eighmy 法官认为他在行使藐视法庭的权力,这并不能解决问题。可以肯定的是,即使诉讼当事人“没有穿着……长袍,……也没有在法庭上”,法官也可以获得绝对豁免权,指控他们藐视法庭。”但在本案中,孩子们从未成为当事人,他们从未踏入法庭,而且 Eighmy 法官亲自将他们关了起来。到目前为止,我们找不到任何扩大司法豁免权的案例。Eighmy 法官的另一个论点也好不到哪里去:密苏里州法律允许法官非正式地执行儿童福利法规。毫无疑问,如果儿童的行为“有损于[他们]的福利或他人的福利”,警察可以拘留他们。但法官不能,他们只能命令其他人在少年听证会之前和之后“照顾好孩子”。关键在于,司法豁免权之所以无法实现,是因为 Eighmy 法官所做的不是“法官通常履行的职责”。“71 F.4th,第 671-72 页。
1。简介石墨及其工业用途的发现可以追溯到16世纪,即在第1届工业革命之前的200多年,该革命是从18世纪中期到19世纪中期。石墨的第一次工业用途是用作铅笔铅和降压材料。现在用于包括核能在内的各种高科技领域。每年生产超过120万吨石墨,未来需求的上升趋势。石墨廉价且分布在世界范围内。根据可验证的资料来源,存在数百年来满足需求的储备。现有的石墨供应几乎是有限的。一旦将石墨的碎屑剥落,它就会成为一种令人着迷的材料,称为“石墨烯”,这是一个令人惊叹的发现,直到2004年才发生。石墨烯比铁钢强1000倍,其电导率和导热性的10倍以上是金属,并且是当今已知的最薄,最轻巧的功能。2010年,诺贝尔物理学奖因其发现而获得。创新的材料和产品可以使用石墨烯在各种领域创建。因此,世界各地的研究机构和公司几乎将石墨烯的实际应用中的研究和开发进行。在发现以来的几年中,已经开发了电子产品,声学产品,声学产品,每日商品,轮胎,高尔夫球,运动服和鞋子,从而利用石墨烯来提高冲击强度,电导率特征等。
基于抽象石墨烯的纳米孔材料(GNM)对于所有需要大型表面积(SSA)(典型的二维石墨烯)的应用都有可能有用,但在整体维度上都实现。此类应用包括例如气体存储和排序,催化和电化学能源存储。通过使用纳米 - 微粒颗粒作为模板来实现对结构的合理控制,但在纳米尺度上严格孔隙率的GNM的受控生产甚至表征仍然会引起问题。这些通常是使用纳米环的分散来产生的,作为前体,几乎无法控制最终结构,这反过来又反映了用于计算机模拟的结构模型构建中的问题。在这项工作中,我们描述了一种具有预定结构特性(SSA,密度,孔隙率)的材料模型的策略,该材料利用了分子动力学模拟,蒙特卡洛方法和机器学习算法。我们的策略受到实际综合过程的启发:从随机分布的平板开始,我们在频率上包括缺陷,穿孔,结构变形和边缘饱和度,在结构性重新结构后,我们获得具有给定结构特征的现实模型。我们发现了起始悬架的结构特征和大小分布与最终结构之间的关系,这可以为更有效的合成途径提供指示。我们在软件工具中实施了模型构建和分析程序,可根据要求免费提供。随后,我们对模型与H 2吸附的完整表征,从中我们从结构参数和重量密度之间提取定量关系。我们的结果定量地阐明了表面和边缘在确定H 2吸附中相对的作用,并提出了克服这些材料作为吸附剂的固有物理局限性的策略。
基于抽象石墨烯的纳米孔材料(GNM)对于所有需要大型表面积(SSA)(典型的二维石墨烯)的应用都有可能有用,但在整体维度上都实现。此类应用包括例如气体存储和排序,催化和电化学能源存储。通过使用纳米 - 微粒颗粒作为模板来实现对结构的合理控制,但在纳米尺度上严格孔隙率的GNM的受控生产甚至表征仍然会引起问题。这些通常是使用纳米环的分散来产生的,作为前体,几乎无法控制最终结构,这反过来又反映了用于计算机模拟的结构模型构建中的问题。在这项工作中,我们描述了一种具有预定结构特性(SSA,密度,孔隙率)的材料模型的策略,该材料利用了分子动力学模拟,蒙特卡洛方法和机器学习算法。我们的策略受到实际综合过程的启发:从随机分布的平板开始,我们在频率上包括缺陷,穿孔,结构变形和边缘饱和度,在结构性重新结构后,我们获得具有给定结构特征的现实模型。我们发现了起始悬架的结构特征和大小分布与最终结构之间的关系,这可以为更有效的合成途径提供指示。我们在软件工具中实施了模型构建和分析程序,可根据要求免费提供。随后,我们对模型与H 2吸附的完整表征,从中我们从结构参数和重量密度之间提取定量关系。我们的结果定量地阐明了表面和边缘在确定H 2吸附中相对的作用,并提出了克服这些材料作为吸附剂的固有物理局限性的策略。