大肠杆菌是生产生物燃料和大宗化学品(如乙醇、高级醇、脂肪酸、氨基酸、莽草酸衍生物、萜类化合物、聚酮化合物和聚合物前体(如 1,4-丁二醇))的最广泛使用的细胞工厂之一(Yang 等人,2021 年)。生产这些生化物质的代谢工程需要对细胞代谢进行大量调节以提高生产率。基因组编辑需要高效的工具来执行节省时间的顺序或多重操作。大肠杆菌有许多基因编辑工具,但它们都有特定的优点和缺点。使用双链 DNA(dsDNA)进行基因工程重组通常需要选择标记,这些标记应在下一步中被消除,以便进行后续修改(Datsenko 和 Wanner,2000 年;Sharan 等人,2009 年)。与双链DNA相比,单链DNA(ssDNA)介导的重组效率更高,并已进一步发展为可进行多重编辑的基因编辑工具,如多重自动基因组工程(MAGE)(Wang et al.,2009)和可追踪多重重组(TRMR)(Warner et al.,2010)。但这些方法不适用于没有选择标记的20bp以上的多个靶基因插入,通常需要强大的高通量筛选方法(Li et al.,2015)。近来发展的成簇的规律间隔的短回文重复序列(CRISPR)/CRISPR相关蛋白(Cas)系统被广泛应用于大肠杆菌的基因工程,极大地促进了其应用。成熟的 CRISPR RNA (crRNA) 和反式激活 crRNA (tracrRNA) 双链(或单个合成向导 RNA,sgRNA)或仅 crRNA 引导 Cas 核酸酶切割具有所需原型间隔区相邻基序 (PAM) 的靶 DNA 序列 (Jiang et al., 2013)。我们之前的文章 (Liu et al., 2020) 总结了不同类型的 CRISPR 系统的机制。CRISPR/Cas 系统持续切割靶位点,直到成功编辑或未编辑的细胞死亡,从而无需使用选择标记。
加工Vinnol®H15/45 m(可再生能量)通常以溶解形式使用。酮和酯是Vinnol®H15/45 m(可再生能量)最常用的溶剂,酮比酯更有效。是真正的溶剂,而三氯乙烯和四氯乙烯仅具有溶胀效应。醇和脂肪液碳氢化合物不会溶解Vinnol®H15/45 m(可再生能量)。芳香烃可以与真实溶剂合并到有限的程度上。vinnol®H15/45 m(可再生能量)可以用单体和聚合物增塑剂(例如邻苯二甲酸盐,脂肪酸盐,sebacates,柠檬酸盐,柠檬酸盐,磷酸盐,环氧化物和氯氧化物氧化物)塑化。vinnol®H15/45 m(可再生能源)与所有其他Vinnol®表面涂层树脂完全兼容。它也与许多丙烯酸聚合物和酮树脂以及一些环氧化物结合在一起。醇酸树脂,硝酸纤维素,聚乙烯基乙酸酯和聚乙烯基丁烷通常与Vinnol®H15/45 m(可再生能量)不相容。我们建议始终检查Vinnol®H15/45 m(可再生能量)与相关聚合物的兼容性。必须在初步测试中检查Vinnol®H15/45 m(可再生能量)与颜料或着色剂的兼容性。某些颜料/着色剂可能会产生触变作用和/或损害粘附。使用含有锌或镉的颜料时必须注意,因为它们会在温度升高时催化VC共聚物的分解。也适用于铁氧化物色素。尽管固有的稳定性良好,但某些应用必须根据Vinnol®H15/45 m(可再生能量)稳定涂层,以针对热和/或紫外线进行稳定。环氧化合物通常足以稳定这些涂层,以防止低热撞击。涉及较高温度的地方,建议使用钙/锌或有机素稳定剂。户外应用需要额外使用紫外线稳定器以及针对这些条件优化的热稳定器。为了避免出现变色的风险,应在制备溶液和随后的产品存储期间避免与铁接触。vinnol®基于表面涂料化合物应存储在涂层容器中。
Ramachandrapuram政府学位学院化学讲师。 摘要:传统上,制药行业依靠合成防腐剂来延长保质期并保持药物的功效。 但是,对消费者对自然和可持续性解决方案的需求增加导致向天然防腐剂转移。 本评论探讨了制药行业中天然防腐剂的发展,重点是其来源,行动机制,优势和挑战。 天然防腐剂,例如精油,植物提取物和基于发酵的物质,越来越多地被纳入药品制剂中,作为合成化学物质的替代品。 本文考虑了自然防腐剂的当前趋势,创新和未来的前景,即它们的安全性,有效性和监管方面。 还讨论了天然防腐剂在减少环境影响和增强产品可持续性中的作用。 关键词:天然防腐剂,制药行业,精油,植物提取物,可持续性,发酵,药物配方,保质期扩展,监管挑战。 简介:在制药行业中,防腐剂是确保随着时间的推移稳定性,安全性和有效性的重要组成部分。 这些物质可以预防微生物生长和氧化,这可能导致产物降解并损害治疗功效。 传统上,羟基苯甲酸酯,酚和醇等合成防腐剂已被广泛使用。Ramachandrapuram政府学位学院化学讲师。摘要:传统上,制药行业依靠合成防腐剂来延长保质期并保持药物的功效。但是,对消费者对自然和可持续性解决方案的需求增加导致向天然防腐剂转移。本评论探讨了制药行业中天然防腐剂的发展,重点是其来源,行动机制,优势和挑战。天然防腐剂,例如精油,植物提取物和基于发酵的物质,越来越多地被纳入药品制剂中,作为合成化学物质的替代品。本文考虑了自然防腐剂的当前趋势,创新和未来的前景,即它们的安全性,有效性和监管方面。还讨论了天然防腐剂在减少环境影响和增强产品可持续性中的作用。关键词:天然防腐剂,制药行业,精油,植物提取物,可持续性,发酵,药物配方,保质期扩展,监管挑战。简介:在制药行业中,防腐剂是确保随着时间的推移稳定性,安全性和有效性的重要组成部分。这些物质可以预防微生物生长和氧化,这可能导致产物降解并损害治疗功效。传统上,羟基苯甲酸酯,酚和醇等合成防腐剂已被广泛使用。然而,越来越多的消费者担心与合成添加剂相关的潜在健康风险以及向天然成分的转变促使研究人员和制药公司探索自然保存替代方案。天然防腐剂源自各种植物,动物和微生物来源,被认为比其合成对应物具有多个优势。他们被认为是更安全,更环保的,并且诱发患者不良反应的可能性较小。尽管有希望的潜力,但天然防腐剂在稳定性,监管批准和广泛的商业化方面面临挑战。本文回顾了天然防腐剂在制药行业中的开发和当前应用,对其来源,机制,优势和挑战进行了深入的检查。天然防腐剂的来源:自然防腐剂,源自各种有机源,在制药行业提供了广泛的潜在应用。这些防腐剂可以大致分为基于植物的,基于微生物的和基于发酵的来源。这些来源中的每一个都将独特的化合物和生物活性特性带入药物配方,从而提供明显的保存优势。
摘要在本研究中,细菌和真菌多样性以及挥发性概况,即即食葡萄牙止痛药,ibérico发酵香肠,由Beja(生产商A)和Evora(生产者B)的两个手工生产商制造。为此,将不同的选择性生长培养基和元时间分析与顶空相固相微型提取气相色谱/质谱法(HS-SPME-GC/MS)相结合。微生物可行计数的结果表明,乳酸细菌的活性微生物种群(最多8 log cfu g -1),凝结酶阴性球菌(最多6 log cfu g -1)和Eumyycetes(最多6 log cfu g -1)。细菌种群的特征是Latilactobacillus Sakei(高达72%)与Weissella和weissella和葡萄球菌相对相对频率。Mycobiota主要由Hansenii Debaryomyces(高达相对频率的55%)和kurtzmaniella Zeylanoides(高达相对频率的24%)主导。也检测到了wickerhamomyces子细胞和Zygosacchomyces rouxii的意外物种。HS-SPME-GC/MS分析允许识别复杂的挥发性曲线,显示超过160个挥发性有机化合物(VOC)。VOC属于十二类,例如醛,酮和内酯,酯和醋酸酯,醇,萜类化合物,硫酸化合物,硫酸化合物,脂肪族烃,芳香族烃,氮,氮化合物,酸,酸味,富氏和pyrans和pyrans和Partyls和Partyls和Plactors。对VOC组成的分析提供了证据,表明两个生产者(A和B)的样本不同,如主要成分分析所证实。因此,尽管两个生产商的生产过程可能是用于制造Painho型香肠的生产商,但环境条件,所使用的原材料以及与屠夫的经验实践相关的变化,对最终产品产生了强烈影响。本研究中获得的结果代表了关于葡萄牙发酵香肠的生物多样性和VOC组成的知识的进一步发展。为了更好地了解自动微生物与painho de porcoibérico发酵香肠中的肉糊之间发生的相互作用,必须在整个生产过程中进一步加深微生物和VOC动态。关键字:latilactobacillus sakei,hansenii,metataxonomic Analysis,生物多样性,Mycobiota,VolatiLome
主要产品:涂料和油墨添加剂:Texanol™、Optifilm™、酮、酯、乙二醇醚、醇溶剂、EastaPure™、纤维素、聚酯、聚烯烃基聚合物和 Tetrashield™ 保护性树脂体系胶粘剂树脂:碳氢化合物树脂(Piccotac™、Regalite™、Eastotac™、Eastoflex™、Aerafin™)轮胎添加剂:Crystex™ 不溶性硫磺、Santoflex™ 抗降解剂和 Impera™ 高性能树脂护理化学品:烷基胺衍生物、有机酸及衍生物、纤维素酯、Banguard™ 杀菌剂特种液体:Eastman Therminol™ 传热流体、Skydrol™、涡轮机油、SkyKleen™、Marlotherm™动物营养:有机酸及衍生物、有机酸基溶液、氯化胆碱、Eastman Enhanz™ 主要市场与应用: 运输:橡胶轮胎制造中使用的不溶性硫、抗降解剂和高性能树脂、OEM 和修补涂料中使用的聚合物和溶剂、航空液体 消耗品:卫生和包装胶粘剂中使用的树脂、涂料添加剂以及图形艺术和油墨中使用的聚合物 建筑:建筑涂料中使用的溶剂、建筑胶粘剂和室内地板用树脂 食品、饲料与农业:土壤熏蒸剂、动物饲料的肠道健康、防腐、杀菌剂和植物生长调节剂 工业化学品与加工:化学过程和可再生能源的传热流体 能源、燃料与水:水处理用的烷基胺衍生物 消费/医疗耐用品:涂料、木材和工业应用中使用的聚合物和溶剂 个人护理/健康与保健:个人护理应用和水处理中使用的胺基中间体 主要原材料:醇、烷基胺、氨、苯胺、甲基苯乙烯、苯、C9 树脂油、CS2 烧碱、环氧乙烷、甲酸、松香、重质燃料油、甲基异丁基酮、环烷工艺油、新多元醇酯、硝基苯、戊二烯、磷、丙烷、丙烯、硫、苯乙烯、木浆 主要竞争对手: 涂料和油墨 添加剂:巴斯夫欧洲公司、陶氏公司、Oxea、塞拉尼斯公司 粘合剂树脂:埃克森美孚公司、可隆工业公司、赢创工业公司 轮胎添加剂:东方炭素化学株式会社、四国化成株式会社 护理化学品:巴斯夫欧洲公司、陶氏公司、亨斯迈公司、科迪华公司、Agro-Kanesho 株式会社、拜耳 特种液体:陶氏公司、埃克森美孚公司 动物营养:巴斯夫欧洲公司、Perstorp Holding AB、鲁西化工集团、肥城酸性化学品
11。实验模型是用方向支撑30的氢爆炸。ioana tuhut ligia,英格。Andrada Matei,博士。 eng。 Full-Mihai Pascuscu,博士。 eng。 Daniel-Gheorore博士。 eng。 Adrian Simon-Marinica 语法语法受支持的促进的铁催化剂,助理。 证明。玛丽亚博士马尔可瓦,阿索。 证明。 Antonina博士斯蒂芬,弗拉基米尔·P·莫尔查诺夫(Vladimir P. Molchanov)博士,同事。 证明。 N. Demidenko博士,Mikhail G. Sulman博士99 13。 火焰助手:理解对Mensans的燃烧,Assoc。 证明。 Castle Plant博士。 证明。大卫·莱昂(David Leon) 证明。伊莎贝尔(Isabel)博士评估,罗伯茨(Roberts),阿索(Asso)。 证明。 David Bolonio博士... 静液压动力传输系统此风力涡轮机,博士学位。英语 Dumirescu,博士英语 Chirita的Alexander-Polifron博士学习。 eng。 Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。 Maria Carla Carla Popescu 115。 证明。 Beyoning博士,协会。 证明。 Demidenko Galili博士,协会。 证明。 Beryozkina Svelana博士,博士学位。 证明。大卫·莱昂(David Leon)Andrada Matei,博士。eng。Full-Mihai Pascuscu,博士。eng。Daniel-Gheorore博士。 eng。 Adrian Simon-Marinica 语法语法受支持的促进的铁催化剂,助理。 证明。玛丽亚博士马尔可瓦,阿索。 证明。 Antonina博士斯蒂芬,弗拉基米尔·P·莫尔查诺夫(Vladimir P. Molchanov)博士,同事。 证明。 N. Demidenko博士,Mikhail G. Sulman博士99 13。 火焰助手:理解对Mensans的燃烧,Assoc。 证明。 Castle Plant博士。 证明。大卫·莱昂(David Leon) 证明。伊莎贝尔(Isabel)博士评估,罗伯茨(Roberts),阿索(Asso)。 证明。 David Bolonio博士... 静液压动力传输系统此风力涡轮机,博士学位。英语 Dumirescu,博士英语 Chirita的Alexander-Polifron博士学习。 eng。 Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。 Maria Carla Carla Popescu 115。 证明。 Beyoning博士,协会。 证明。 Demidenko Galili博士,协会。 证明。 Beryozkina Svelana博士,博士学位。 证明。大卫·莱昂(David Leon)Daniel-Gheorore博士。eng。Adrian Simon-Marinica语法语法受支持的促进的铁催化剂,助理。证明。玛丽亚博士马尔可瓦,阿索。证明。 Antonina博士斯蒂芬,弗拉基米尔·P·莫尔查诺夫(Vladimir P. Molchanov)博士,同事。证明。 N. Demidenko博士,Mikhail G. Sulman博士99 13。火焰助手:理解对Mensans的燃烧,Assoc。证明。 Castle Plant博士。证明。大卫·莱昂(David Leon)证明。伊莎贝尔(Isabel)博士评估,罗伯茨(Roberts),阿索(Asso)。证明。 David Bolonio博士...静液压动力传输系统此风力涡轮机,博士学位。英语Dumirescu,博士英语Chirita的Alexander-Polifron博士学习。eng。Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。 Maria Carla Carla Popescu 115。 证明。 Beyoning博士,协会。 证明。 Demidenko Galili博士,协会。 证明。 Beryozkina Svelana博士,博士学位。 证明。大卫·莱昂(David Leon)Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。Maria Carla Carla Popescu 115。证明。 Beyoning博士,协会。证明。 Demidenko Galili博士,协会。证明。 Beryozkina Svelana博士,博士学位。证明。大卫·莱昂(David Leon)芳香族聚合物作为PT颗粒稳定剂的性质对芳族和多氨基底物的液相氢化中的活性和选择性的影响。Prof. Dr. Linda Nikoshvili, Ms. Elena Bakhvalova .......................................... 123 16.调查太阳能发电厂的并行操作的过渡过程和紧急干扰下的网格。Bohirjon Sharifov,Murodbek Safaraliev博士,Anvari Ghulomzoda博士,博士。 Mukhammadjon Odinabekov ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 烟花生命周期分析:环境影响和改善机会,协助。 David Bolonio博士,同事。 研究员Roberto Paredes教授Isabel Amez博士,协助。 Prof. Dr. Blanca Castells ............................................................................................... 139 18. 使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。 教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................Bohirjon Sharifov,Murodbek Safaraliev博士,Anvari Ghulomzoda博士,博士。Mukhammadjon Odinabekov ...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................烟花生命周期分析:环境影响和改善机会,协助。David Bolonio博士,同事。 研究员Roberto Paredes教授Isabel Amez博士,协助。 Prof. Dr. Blanca Castells ............................................................................................... 139 18. 使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。 教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................David Bolonio博士,同事。研究员Roberto Paredes教授Isabel Amez博士,协助。 Prof. Dr. Blanca Castells ............................................................................................... 139 18. 使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。 教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................研究员Roberto Paredes教授Isabel Amez博士,协助。Prof. Dr. Blanca Castells ............................................................................................... 139 18.使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................教授Krzysztof Kolodziejczyk,MSC Eng。Jedrzej Minda ..................................................... 149 19.优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................
第 5 节:消防措施 消防员应使用全脸自给式呼吸器和防渗透防护服保护自己免受分解和燃烧产物(CO、CO2、烯烃和石蜡化合物、微量有机酸、酮、醛和醇)的伤害。 着火时,可能会形成有害健康的气体。用水、泡沫、二氧化碳或干化学介质灭火。 粉尘在细分并悬浮在空气中时易燃易爆。 第 6 节:意外泄漏措施 如果发生泄漏,从源头堵住泄漏并清扫处理。不要冲入下水道或水道。 第 7 节:处理和储存 安全处理预防措施 建议注意个人卫生,例如在接触此材料后和进食前立即洗手和洗脸。 粉尘可能与空气形成爆炸性混合物。避免形成粉尘并控制点火源。悬浮在空气中的聚烯烃粉尘颗粒可燃并且可能爆炸。远离热源、火花、火焰和其他火源。防止粉尘堆积和尘云。根据公认的工程实践和 NFPA 规定,在任何可能产生粉尘和/或静电的过程中,采用接地、粘合、通风和爆炸释放措施。爆炸危险仅适用于粉尘,不适用于本产品的颗粒形式。在装卸操作以及制造过程中处理粉末可能会导致粉尘形成,应采取必要的个人防护措施。与所有细分材料一样,应采取预防措施避免吸入和眼睛接触。如果是粉尘形式,请在从储存处转移时尽量减少除尘。根据 NFPA 70“国家电气规范”,将所有转移、混合和集尘设备接地,以防止静电火花。查看并遵守所有相关的 NFPA 规定,包括但不限于与可燃粉尘危险有关的 NFPA 484 和 NFPA 654。从可能存在粉尘的材料处理、转移和加工区域移除所有火源。工作区域应提供局部排气通风。安全储存注意事项存放在有喷水灭火系统的仓库中。由于产品是聚乙烯,因此一旦点燃,它们会燃烧并产生热火焰。避免接触明火等火源。如果在聚乙烯产品周围进行热作业,请在附近放置灭火器。如果有热源,请保持该区域通风良好。第 8 节:暴露控制/个人防护
智能窗户。[6–8] 此外,如果可以利用聚合物的隔热性能,TW 在节能建筑应用方面有潜力。[9] 有机相变材料 (PCM) 是适合混合到聚合物复合材料中的潜热存储介质,可以转移或降低建筑物的热负荷峰值。[10,11] PCM 在相变过程中可以通过熔化和结晶吸收和释放潜热。基于化石的石蜡和聚乙二醇已广泛用于热能存储,具有较大的存储容量和理想的转变温度范围(10-45°C)。[12] 然而,除了不可持续之外,这些 PCM 的形状稳定性差,熔化时会出现泄漏,导致循环能力差。作为一种解决方案,已经探索了木质结构来嵌入 PCM 并避免在固液相变过程中发生泄漏,但是,开发的材料不透明并且能源效率有限。 [13–16] 我们实验室过去首次尝试开发用于热能存储的多功能 TW,重点关注化石基 PCM。[17,18] 虽然用于 PCM 封装的环保木材基材有助于可持续发展,但需要生物基 PCM 替代品来限制材料的碳足迹。[19] 如果需要对木材进行化学功能化处理,则处理方式应环保。[20] 我们的贡献包括绿色琥珀酰化以稳定水分和改善木材/聚合物相互作用,[21] 以及由柠檬烯制成的新型生物基聚合物基质,用于 TW 生物复合材料。[22] 剩下的挑战是设计完全生物基和功能性的 TW 用于热存储,其中所有成分都来自可再生资源,且加工对环境的影响较小。由此产生的 TW 应该是可持续的,而不会影响储热性能、机械性能和透明度。来自植物油和脂肪酸的天然脂肪醇是传统 PCM 的绿色替代品。 [23] 生物基 1-十二醇,也称为月桂醇,具有高潜热和适当的转变温度(25°C)。只有少数研究将 1-十二醇与木质纤维素材料结合。[24–26] 然而,这些材料表现出较差的形状稳定性和潜热,仍然需要石油资源,并且缺乏可持续性指标。为了解决这些缺点,脱木质素木材“骨架”因其层次分明、
在过去的二十年里,AuNP 在生物医学应用、[1] 传感器[2] 和光子学等许多应用领域引起了极大的关注。[3] AuNP 在催化方面也被证明具有巨大的潜力。[4] AuNP 已被广泛合成并作为各种反应的催化剂进行研究,例如 CO 氧化、[5] 醇的需氧氧化、[6] 氢化、[7] 偶联反应[8] 和还原反应。[9] AuNP 在高催化活性、简单纯化、易于回收和可再利用方面表现出优异的性能,在工业应用中得到了广泛的应用。作为一个经典的模型反应,在硼氢化钠 (NaBH 4 ) 的帮助下,硝基苯酚还原为氨基苯酚的反应经常被用来评估 AuNP 的催化活性。 [10] 先前的研究报告称,AuNP 的尺寸、[11] 形状[12] 和封端配体 [13] 在催化活性中起着至关重要的作用,是决定反应速率的关键因素。例如,Fenger 的研究表明,如果 AuNP 的尺寸在 3.5 至 56 纳米之间,则 13 纳米 CTAB 封端的 AuNP 对硝基苯酚还原表现出最高的催化活性。[11b] Zboril 及其同事证明,尺寸减小的金纳米粒子对相同反应的催化活性会增加。[14] 已经证明,较小的粒子比较大的粒子活性高得多,因为它们的表面积更大。据我们所知,目前只有极少数文献发表了关于具有相同总表面积(即ΣNiAi=ΣNjAj,Ni、Nj分别为粒子i和j的数量,Ai、Aj代表单个纳米粒子i和j的表面积)但不同粒径的AuNP尺寸对硝基苯酚还原反应的影响。例如,Puntes等人描述,如果AuNP具有良好控制的十面体形貌,[11e]则AuNP的活性会随着尺寸的增加而降低。有研究表明,金原子在较小纳米粒子上的配位性比在较大纳米粒子上的低。本研究旨在从不同角度进行详细研究,以了解AuNP的表面积和结构对其催化行为的影响。为此,用不同尺寸的AuNP进行催化硝基苯酚还原。条件是不同尺寸的AuNP的总表面积保持不变。为了将这一发现放在更广泛的数据基础上,我们用两种不同的封端配体,柠檬酸盐 (Ct) 和聚乙烯吡咯烷酮 (PVP) 进行了实验。
摘要:对于食物,饲料,化妆品,化学和药物领域,口味和香气至关重要。如今,化学合成和提取用于创建大多数风味分子。 味道通常是由复杂基质中存在的各种挥发性和非易失性成分引起的,每种矩阵中的各种成分都表现出独特的化学和物理特性混合。 由于这种化学过程而产生不必要的外消旋组合是一个缺点,消费者对食品,化妆品和其他家用物品中使用的化学物质的抵抗力也不断增加。 这驱动了风味生产者,专注于具有生物学起源的风味成分,有时被称为天然或生物风味。 大多数香水元素现在是使用常规技术(例如通过自然来源或提取的合成生产)制成的。最近,植物是精油和风味的重要来源。但是,由于活性成分经常以痕量量,绑定或仅在外来物种中发现,因此隔离是具有挑战性的,风味产品很昂贵。 除了植物细胞和组织培养方法外,还可以对相关的前体化学物质进行生物转化。 以最近商业化的技术为重点,该研究讨论了基于微生物及其酶的生物风味合成领域的最新技术。 实现这种自发合成的另一种方法是基于微生物生物合成或生物转化。 此外,它对香料化学物质的生物技术综合进行了调节观察。如今,化学合成和提取用于创建大多数风味分子。味道通常是由复杂基质中存在的各种挥发性和非易失性成分引起的,每种矩阵中的各种成分都表现出独特的化学和物理特性混合。由于这种化学过程而产生不必要的外消旋组合是一个缺点,消费者对食品,化妆品和其他家用物品中使用的化学物质的抵抗力也不断增加。这驱动了风味生产者,专注于具有生物学起源的风味成分,有时被称为天然或生物风味。大多数香水元素现在是使用常规技术(例如通过自然来源或提取的合成生产)制成的。最近,植物是精油和风味的重要来源。但是,由于活性成分经常以痕量量,绑定或仅在外来物种中发现,因此隔离是具有挑战性的,风味产品很昂贵。除了植物细胞和组织培养方法外,还可以对相关的前体化学物质进行生物转化。以最近商业化的技术为重点,该研究讨论了基于微生物及其酶的生物风味合成领域的最新技术。实现这种自发合成的另一种方法是基于微生物生物合成或生物转化。此外,它对香料化学物质的生物技术综合进行了调节观察。该分析通过有关发酵和生物转化技术的详尽参考文献扫描,用于风味成分生产。关键词:生物技术方法,基于微生物的香水和口味,生物转化,微生物,酶和培养细胞。收到28.10.2022修订后的30.11.2022接受了20.12.2022介绍芳香族化合物和香水在当今几乎所有业务中都使用,因为它们对食品和饮料等物品的成品质量的重要性。这些成分的主要来源是在精油中发现的单二烯分子。但是,这些化学物质仅以微量数量发现,并且它们的产量或提取过程可能会受到许多变量,例如浓度,植物性疾病,植物性复杂性提取物以及经济和环境限制的许多变量。化学合成是一种典型的香气化合物制造方法。在此过程中,本质上丰富的分子,例如萜碳酸碳酸盐,用作起始材料[1]。味道通常是由复杂基质中存在的各种挥发性和非易失性成分引起的,每种矩阵中的各种成分都表现出独特的化学和物理特性混合。挥发性物质不仅影响味道,而且影响香气,而非易失性分子在很大程度上造成了味道。可能有助于餐食的某些成分包括醇,醛,酯,二色龙,短和中链游离脂肪酸,甲基酮,内酯,酚类化合物和硫化合物。硫化学物质和酚类化合物是两个可能的原因[2,3]。
