几十年来,研究人员一直致力于开发适应性更强、对环境胁迫耐受性更强的改良主要作物。饲用豆科植物因其巨大的生态和经济价值而在世界范围内广泛传播。非生物胁迫和生物胁迫是限制豆科植物生产的主要因素,而苜蓿(Medicago sativa L.)对干旱和盐胁迫表现出较高的耐受性。对苜蓿改良的努力已导致推出了具有高产量、更好的胁迫耐受性或饲用品质等新的农艺重要性状的品种。苜蓿与固氮细菌有高效的共生关系,因此具有非常高的营养价值,而深根系统有助于防止干旱土地的土壤水分流失。与它的近亲苜蓿(Medicago truncatula Gaertn.)不同,苜蓿的全基因组尚未发布,因此现代生物技术工具在苜蓿中的使用具有挑战性。识别、分离和改良与非生物或生物胁迫反应有关的基因,对我们了解农作物如何应对这些环境挑战做出了重大贡献。在这篇综述中,我们概述了高通量测序、非生物或生物胁迫耐受基因的表征、基因编辑以及具有苜蓿改良生物技术潜力的蛋白质组学和代谢组学技术方面取得的进展。
抽象牧场在碳(C)隔离和全球C平衡中起着至关重要的作用。部分根区干燥(PRD)众所周知,可以减少水消耗,对该田间苜蓿生产率产生最小的影响。使用2年的现场实验来研究PRD对苜蓿土壤植物系统中C保留的影响。该田间实验包括分开图设计中的两个因素(灌溉模式和灌溉量)。两种灌溉模式是PRD和常规的沟冲洗,四个灌溉水平为70%,85%,100%和115%的苜蓿潜在蒸发。这项研究表明,由于苜蓿根中C较高的C,PRD增加了苜蓿植物中的C。PRD导致了较高的土壤有机C储存,而它导致了较低的土壤总C和土壤无机C储存。PRD可降低苜蓿土壤植物系统中的C保留率。这项研究的发现显示了PRD在多年生作物的土壤植物系统中影响c保留的模式,这意味着PRD降低了苜蓿牧场的c固存潜力。
肠道微生物群在几种昆虫的营养中起功能。但是,在鳞翅目中尚不清楚情况。现场研究表明,微生物组可能不稳定,并且是由饮食决定的,而在实验室中,鳞翅目通常是在含有对微生物群落影响不明的抗生素的饮食上饲养的。此外,鳞翅目微生物组的表征的分子方法很少描述代谢活性的肠道细菌。这项研究的目的是评估饮食和抗生素如何影响Spodoptera exigua(Hübner)生长以及肠道细菌群落的多样性和活动。我们评估了在存在和不存在链霉素的情况下,苜蓿和小麦基饮食如何影响幼虫的生长。苜蓿饮食改善了幼虫的生长,pupal质量和生存率,但抗生素仅在小麦细菌饮食中受益。我们观察到肠道细菌群落中饮食驱动的变化。在活跃的社区中,苜蓿菌落以肠球菌和犀牛为主,而在小麦种植菌群中,仅存在肠球菌。相比之下,形成孢子的杆菌是DNA群落中非常普遍的成员。在这两种情况下,链霉菌素对存在的分类单元的相对丰度都有选择性影响。我们的研究强调了表征肠道微生物群落多样性和活动的重要性。DNA衍生的群落可能包括环境DNA,孢子或不可行的细菌,而RNA衍生的社区更有可能准确地表示有可能直接参与宿主代谢过程的活性成员的多样性。
•长嘴curlew(Numenius Americanus)。长嘴curlew在CDFW观察列表中,并以S2的状态列出。具有该等级的物种被认为是由于范围限制,人口或发生的数量,急剧下降,服务器威胁或其他因素而被认为是危险的,并且在该州被灭绝的风险很高。栖息地包括用于筑巢的山地短草大草原和湿的草地;冬季使用大型沿海河口,高地草本区和农田。项目地点在长期范围内,但确实占据了冬季。在调查过程中,在拟建的dogwood寄生太阳能设施以西的调查缓冲区区域内的苜蓿田和现有管道区域以东的调查缓冲区区域内观察到了长嘴弯曲。此外,周围地区还种植苜蓿,并定期泛滥以进行灌溉。
•DSSAT版本4.8.5版本将在2024年底之前发行。 Alfalfa, Bahia, Bermuda, Brachiaria, Guinea Grass • Ongoing work, new features include: o New crops – Hemp, Cactus, Winter Pea, Onion, White Reddish, Sweet Potato, Camelina, Forage maize o Model for tree crops – TreeGro – Sweet oranges o Energy balance & canopy temperature o 2-D soil module o Soil temperature improvement • Mixed languages: Fortran and C++ • Generic pest and疾病模型•间作•XB2(xbuid,filex创建者的替代)•GLUEP(胶水的更新与并行处理的胶水更新) - 农业中的计算机和电子产品227(2024)•TSE(时间序列估算器) - Asabe 64(4)(4):1391-1402(20221)(20221)
•相对于放牧系统(连续与旋转放牧系统),在放牧期间量化了牛和小牛的生长,以及放牧季节结束时的繁殖率。•测量牛的肠甲烷相对于放牧系统的产生。•表征牛的粪便微生物组,并将其与肠ch4产量相关联并建立肠ch 4的生物标志物。•增强肠甲烷对遗传潜力的基因组预测,以在放牧时选择减少排放的牛。•将牛水平的数据与土壤,植被,温室气体排放和社会经济结果相结合。ADF资金:$ 314,801苜蓿中的气候变化弹性,以增强牛肉和乳制品生产的盈利能力和可持续性。(20240701)首席研究员:Stacy Singer,农业和加拿大农业食品
图2在单场试验中生长的覆盖作物物种的表型性状评估。(a)植物表型特征的主要成分分析由植物质量分数和杂草严重程度的家族聚集,这是对PC1和总生物量的最大贡献者,对PC2的贡献最大。(b - g)箱形图显示了每个覆盖作物物种的单个表型特征评分。苜蓿(Medicago sativa),Dundale Pea(trifolium incarnatum),Milkvetch(Astragalus spp。),深红色三叶草(Pisum sativum),毛茸茸的vetch(vicia villosa),芥末酱(Brassica juncea),大麦(大麦(Hordeum vulgare)),小麦(triticum aestivum),冬季rye(secale cereale)(secale cereale)和diliticale(x triticosecale)[×Triticosecale)[