摘要 驯化微藻有望为人类家庭和工业消费提供可持续的各种生物资源。由于微藻工程技术的限制,其潜力还远未得到充分挖掘。相关技术不如异养微生物、蓝藻和植物的技术那么发达。然而,最近对微藻代谢工程、基因组编辑和合成生物学的研究极大地帮助提高了转化效率,并为该领域带来了新的见解。因此,本文总结了微藻生物技术的最新发展,并探讨了通过代谢工程和合成生物学过程生产特色产品和商品产品的前景。在简要介绍了经验工程方法和载体设计之后,本文重点介绍了定量转化盒设计,详细阐述了目标编辑方法和新兴的藻类细胞代谢数字化设计,以实现高产量的有价值产品。这些进步使得微藻工程方式从单基因和基于酶的代谢工程转变为系统级精确工程,从带有转基因 (GM) 标签的细胞转变为不带转基因标签的细胞,并最终从概念验证转变为切实的工业应用。最后,提出了微藻工程的未来趋势,旨在为特定菌株的特色产品和商品产品在新发现的物种中建立个性化转化系统,同时在模型藻类物种中开发复杂的通用工具包。
剑桥大学出版社对本出版物中提到的外部或第三方互联网网站的URL的持久性或准确性不承担任何责任,并且不能保证此类网站上的任何内容都是准确或适当的。有关价格,旅行时间表和本工作中提供的其他事实信息的信息是正确的,但剑桥大学出版社并不能保证此后此类信息的准确性。
VHS是排除或消除狗心脏病的有用工具(Guglielmini等人。2009)。 当可将二极管造影不可行时,VHS也可以用作识别B2期退行性瓣膜疾病患者的替代品,这是启动心脏疗法的阈值(ITO 2022)。 补充,随着时间的推移,VHS的绝对VHS和变化已被证明可以预测多项研究的心力衰竭开始(Boswood等人。 2016,2020)。 VHS确实具有一定的可变性来源。 两项荧光镜研究的平均变化在心脏周期的收缩期和舒张期之间的平均变化约为0.3至0.4。 在呼吸周期的灵感和外向阶段之间也可以平均变化0.2椎骨(Olive etal。 2015)。 最后,人类的可变性研究表明,不同读取器的平均差异约为0.4至1.0椎骨(Hansson等人。 2005)。 最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人 2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2009)。当可将二极管造影不可行时,VHS也可以用作识别B2期退行性瓣膜疾病患者的替代品,这是启动心脏疗法的阈值(ITO 2022)。补充,随着时间的推移,VHS的绝对VHS和变化已被证明可以预测多项研究的心力衰竭开始(Boswood等人。2016,2020)。VHS确实具有一定的可变性来源。两项荧光镜研究的平均变化在心脏周期的收缩期和舒张期之间的平均变化约为0.3至0.4。在呼吸周期的灵感和外向阶段之间也可以平均变化0.2椎骨(Olive etal。2015)。最后,人类的可变性研究表明,不同读取器的平均差异约为0.4至1.0椎骨(Hansson等人。2005)。 最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人 2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2005)。最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2020,Li等。2020)。计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。2021)。此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。2017)。2021,Baisan&Vulpe 2022,Wiegel等。此外,可以根据狗品种,身体状况和心脏状况进行VHS测量的其他差异来源(Puccinelli等人。2022)。本研究的目的是评估使用简化的Sanchez方法的使用VHS算法的性能与使用Buchanan方法在三位董事会认证的兽医心脏病学家之间分配的1200个X光片相比,使用了1200个X射线照片。
摘要:本文介绍了柔性自动运输系统中工件转运机器人离散操作的控制算法和通信系统,研究了控制站主站综合系统和移动机器人从站控制器之间的信息传输和接收算法。
已经对数据挖掘在包括CAD在内的疾病诊断中的应用进行了各种研究; [9,10]将建议的模型与基于PSO的自适应神经融化推理系统(PSO -ANFIS)进行了比较。结果表明,建议的模型优于PSO -ANFIS模型。建议的模型还具有2个重要好处:(1)它很快学习,(2)响应迅速。对于大型准确的数据集,快速学习和快速响应能力的重要性很重要。[11] Jackins等。进行了一项研究,以找到可用数据集中诊断糖尿病,冠心病和癌症的模型。他们使用幼稚的贝叶斯分类和随机森林(RF)分类算法进行数据集的分类。结果表明,三种疾病的RF模型的准确性高于幼稚贝叶斯分类器的精度值。[12] Das等。使用统计分析系统,引入了一种诊断心脏病的方法。神经网络集合方法位于提议系统的中心。从从克利夫兰心脏病数据库中获得的数据中获得的分类准确性为89.01%。另外,在心脏病的诊断中分别获得了80.95%和95.91%的敏感性和特异性。[14] Dutta等。[13] Olaniyi和Oyedotun提出了一个基于人工神经网络(ANN)的三步模型来诊断心绞痛,其精度为88.89%。提出了具有卷积层的有效神经网络。他们提出的模型在预测冠心病方面的准确性达到了77%。该模型还能够比传统方法(例如支持向量机(SVM)和RFS)更准确地预测负面案例。[15]
UAV图像采集和深度学习技术已被广泛用于水文监测中,以满足数据量需求不断提高和质量的增加。但是,手动参数培训需要反复试验成本(T&E),现有的自动培训适应简单的数据集和网络结构,这在非结构化环境中是低实用性的,例如干山谷环境(DTV)。因此,这项研究合并了转移学习(MTPI,最大转移电位指数法)和RL(MTSA强化学习,多汤普森采样算法)在数据集自动启动和网络中自动培训,以降低人类的经验和T&E。首先,为了最大程度地提高迭代速度并最大程度地减少数据集消耗,使用改进的MTPI方法得出了最佳的迭代条件(MTPI条件),这表明随后的迭代仅需要2.30%的数据集和6.31%的时间成本。然后,在MTPI条件(MTSA-MTPI)中提高了MTSA至自动提高数据集,结果显示准确性(人为误差)提高了16.0%,标准误差降低了20.9%(T&E成本)。最后,MTPI-MTSA用于四个自动训练的网络(例如FCN,SEG-NET,U-NET和SEG-RES-NET 50),并表明最佳的SEG-RES-NET 50获得了95.2%WPA(准确性)和90.9%的WIOU。本研究为复杂的植被信息收集提供了一种有效的自动培训方法,该方法提供了减少深度学习的手动干预的参考。
量子城通过一项旨在组建支持国家量子战略目标的团体的资金募集活动推出了量子城联盟奖。联盟奖建立在 2022 年启动的首次研究资金募集活动成功的基础上,该活动向艾伯塔省量子研究界投资了 425,000 美元,以推动量子创新。2023 年底,量子城举办了“超越极限网络”活动,为量子学员和研究人员提供了一个交流的平台,从而为量子城学员社区 (QCTC) 计划奠定了基础。QCTC 旨在团结加拿大各地量子和量子相关研究领域的博士后研究员、研究生和本科生,以增强学习体验。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
EIN PressWire的优先级是源透明度。 我们不允许不透明的客户,我们的编辑试图谨慎除清除虚假和误导性内容。 作为用户,如果您看到了我们错过的东西,请引起我们的注意。 欢迎您的帮助。 EIN Presswire,每个人的互联网新闻PressWire™,试图定义一些在当今世界上合理的界限。 请参阅我们的编辑准则以获取更多信息。 ©1995-2025 Newsmatics Inc.保留所有权利。EIN PressWire的优先级是源透明度。我们不允许不透明的客户,我们的编辑试图谨慎除清除虚假和误导性内容。作为用户,如果您看到了我们错过的东西,请引起我们的注意。欢迎您的帮助。EIN Presswire,每个人的互联网新闻PressWire™,试图定义一些在当今世界上合理的界限。请参阅我们的编辑准则以获取更多信息。©1995-2025 Newsmatics Inc.保留所有权利。