此通函提供了维多利亚州有害藻类布鲁姆协调的准备和响应安排的指导。蓝绿色藻类(BGA)或蓝细菌是光合细菌。它们是大多数水生环境的自然组成部分,在溪流,湖泊,河口和大海中发现。水体中的大量BGA水平会影响自然生态系统,并可能影响人类健康。某些BGA可以产生化学化合物,可以通过引起变色以及发霉的气味和味道来污染饮用水供应。更重要的是,某些物种会产生毒素,如果被食用,吸入或与皮肤接触,可能会对人,动物,鸟类和牲畜产生严重的健康结果。由于环境条件变得有利,通常在温暖的月份中,藻类数量会迅速增加,从而导致开花。开花可能会使休闲水不吸引人,并且可能不安全,例如游泳和钓鱼等活动。虽然藻华在温暖的月份更为普遍,但条件有利,但可以全年发生盛开,而无需警告。藻华需要以监测和与公众进行监控和沟通的形式迅速反应,以最大程度地减少其对人类,动物,鸟类,牲畜和农作物的影响和风险。藻华应通过维多利亚州所有相关利益相关者之间的合作来管理。可以提供一个单独的文档,标题为“藻华响应计划”,其中包括维多利亚时代安排的详细信息,以响应藻华。在2级区域开花的情况下,该计划将使用。该计划可通过紧急管理 - 普通操作图片(EM -COP)https://cop.em.vic.gov.au和Algal Blooms模块https://www.floodzoom.vic.gov.gov.au
Photosynthex Corporation 提出了一个为期三年的项目,以展示、量化和优化微藻的培养,用于可持续航空燃料 (SAF)、生物塑料和 omega-3 脂肪酸。该项目将以 PI 在德克萨斯州帝国市 12 年以上的大规模藻类养殖经验为基础。该地点因其咸水地下水、有利的气候和现有的基础设施而具有优势。项目的主要目标包括优化藻类培养和收获方法,以最大限度地提高生物质产量并最大限度地降低成本。这涉及开发一种耐盐的 Nannochloropsis oceanica 菌株以提高水循环效率,并探索替代的二氧化碳输送方法,包括与未来潜在的直接空气捕获技术相关的方法。此外,该项目旨在评估和改进作物保护策略,例如使用臭氧,并通过精确监测和补充氮、磷和铁来优化养分利用。将研究现场生物质加工方法,例如喷雾干燥,以降低运输成本。实施精准农业技术,包括无人机和遥感技术,将提高大规模种植效率。最后,将进行技术经济分析 (TEA) 和生命周期评估 (LCA),以评估该项目的可行性和环境影响。该项目利用多个商业合作伙伴的专业知识,他们将把该项目生产的所有生物质转化为商业产品。该计划旨在为大规模藻类种植生成数据和最佳实践,可与其他种植者共享。该项目还将有助于发展一个区域中心,以支持西德克萨斯州藻类产业的发展。
iii。以特定原因确定以下内容。5 x 3 = 15 m D.微生物实验室中使用的重要仪器的原理和应用。
时间:3小时。最大标记:75
自文明诞生以来,我们依靠农业来维持生计、提供医疗保健和获取资源。然而,在气候驱动的农业挑战中,传统的农业实践已不足以满足不断增长的人口的需求。微藻成为希望的灯塔,提供可持续和可再生的食物、动物饲料和能源来源。它们生长迅速、对非耕地和非饮用水的适应性强,生物产品种类多样(包括生物燃料和营养保健品),使它们成为未来资源管理的基石。此外,微藻捕获碳的能力符合环境保护目标。虽然微藻提供了显著的好处,但成本效益高的生物质生产障碍仍然存在,这限制了其更广泛的应用。本综述将微藻与其他宿主平台进行了比较,强调了当前旨在克服现有障碍的创新方法。这些方法包括一系列技术,从基因编辑、合成启动子和诱变到通过转录因子进行选择性育种和代谢工程。
本研究考虑了生物精炼的关键阶段,研究了大型藻类(Ulva ohnoi)的潜在循环经济方法。研究和报道了生物质干燥、生物炭生产(热解)和应用生物炭除磷等重要阶段。值得注意的是,将大型藻类生物质从平均湿基含水量约 70-85% 干燥至适合热转化的含水量约 10% 是一项艰巨的任务。对生物质和生物炭的物理化学性质进行了表征,并将其与它们吸附磷 (P) 的能力相关联。大型藻类生物质的初步热分析表明,主要重量损失发生在 150 至 550°C 之间。热解过程动力学表明需要 232 至 836 kJ mol − 1 之间的更高表观活化能。当热解过程的温度升高时,可以发现生物炭的孔径、表面积和孔体积增加。在批量实验中,在 700°C 下获得的生物炭的 P 吸附量最高(78 mg-P/g 生物炭),这可能是由于碱金属和碱土金属的可用性。拟二级模型很好地描述了 P 吸附的动力学研究。由大型藻类生物质生产的生物炭可被视为对环境有益且低成本的磷回收吸附剂。吸附后的生物炭由于含有大量的磷磷石,可在农业中用作缓释肥料。
这些藻类菌群因季节而异,不同地点在不同的地点存在,它们的可用性与在该地方的有利状况一致。这些藻类在水生生态系统中起着至关重要的作用,可吸收营养,有毒物质,重金属并将其转化为最简单的形式。它们出现在藤本植物(驻水)和水水(自来水)中。某些藻类具有经济意义,因为它们是胡萝卜素,甘油和藻酸盐的来源,并且可以转化为水产养殖的食物来源。本研究是探索阿查尔浦尔地区萨潘河的藻类生物多样性的初步尝试。Achalpur和Paratwada被称为双城。这个双胞胎城市被一条名为“ Sapan”的河所环绕,有一个丘陵地区,就像对这座城市的篱笆一样。这座城市位于马哈拉施特拉邦和中央邦的边界。萨潘河从阿查尔浦城市中心流动。
CO 2排放每年继续增加。因此,要达到巴黎气候协议中设定的目标,有必要减少排放并实施CO 2捕获方法(Kammerer等,2023)。减少CO 2排放的必要性是许多国际法律所需的,包括适合55个包装(Bro园等人2023)和排放交易系统(EU ETS)的修订(Bordignon和Gamannossi degl'innocenti,2023年,Rogulj等人。2023)。在2022年,在通过部门全球发射CO 2中,在电能和发热部门中观察到最大的排放,占总排放量的39.7%(国际能源局,2023年)。在波兰,系统热量大约有1500万人使用,受监管的热量占家庭市场的42%(IzbaGospodarczaCiepłownictwoPolskie 2023)。在热量产生中使用的燃料的多元化正在缓慢发展。波兰市场仍然由化石燃料主导,化石燃料在2021年占热源中使用的所有燃料的69.5%(2020年至68.9%,2019年至71%,2018年 - 72.5%,2017年至74.0%)。在2021年,使用了14,0.89亿吨这种原料来实现许可的热工程需求(UrządRegulacji Energetyki 2022)。必须指出的是,除了燃烧过程外,煤炭的发掘对环境造成了重大负担(Chłopek等人。2021)。上述数据表明,CO 2排放的减少构成了一个严重的挑战。减少
摘要:褪黑激素的饮食补充剂在全球范围内被广泛消费,发达国家是最大的消费者,估计的年增长率约为20%,直到2027年,主要在发展中国家。在其他应用中添加了广泛使用褪黑激素对睡眠障碍和特定问题(例如喷气滞后)的使用,例如抗衰老,抗压力,免疫系统激活,抗癌药等,通常没有处方。化学工业目前涵盖了褪黑激素市场需求的100%。是由几年前具有更多自然消费习惯的部门的动机,这种可能性从植物中获得褪黑激素的可能性,称为植物素,出现。最近,制药行业开发了经过遗传修饰的微生物,其在生物反应器中产生生物褪黑激素的能力已得到增强。本文回顾了褪黑激素消费的化学和生物合成的各个方面,主要是饮食补充剂。分析了从微生物和植物和藻类中获得植物素的利弊,以及天然褪黑激素的优势,避免了褪黑激素化学合成的不必要的化学副产品。最后,分析了这些新产品的经济和质量方面。
建筑物和古迹通常是由微生物殖民的,这些微生物可能导致色彩变化以及美学和物理化学的损害。这种生物殖民化取决于材料和环境。为了更好地理解和将建筑物表面的微生物发育与气象参数相关联,已经使用在两个时期的巴黎地区私人居住区的壁上的原位仪器来测量绿色藻类和蓝细菌的浓度:春季和秋季冬季。还选择了不同的位置来评估位置(地平线或垂直)和情况(阴影与阳光微气候)的影响。结果表明,微生物的发展迅速响应降雨事件,但随着温度较低,相对湿度(RH)较高,冬季的反应更加强烈。蓝细菌对这种季节作用不太敏感,因为它们比绿藻更耐药性。基于所有数据,已经制定了不同的剂量反应函数,以将RH,雨水和温度与绿藻浓度相关联。通过特定的拟合参数来考虑微气候的影响。这种方法必须扩展到新的广告系列测量结果,但对于预测气候变化的影响可能非常有用。