摘要:霉菌酸构成结核分枝杆菌细胞壁结构内的关键成分。由于其结构多样性,霉菌酸的组成在不同菌株之间表现出很大的变化,从而赋予了它们是分枝杆菌物种的“特征”特征的独特标签。在结核分枝杆菌中,霉菌酸的主要类别包括α-,酮 - 和甲氧基麦芽酸。虽然这些霉菌酸主要是将结核分枝杆菌的细胞壁成分(例如阿拉伯乳半于阿拉伯分氏菌,藻酸盐或葡萄糖)酯化成的,但在细菌体外生长过程中,自由霉菌酸的一小部分是分泌的。值得注意的是,不同类型的霉菌酸具有不同的能力来诱导泡沫状宏观噬菌体和触发免疫反应。此外,霉菌酸在宿主细胞的脂质代谢中起调节作用,从而对结核病的进展产生影响。conse-霉菌酸的多方面特性塑造了结核分枝杆菌采用的免疫逃避策略。对霉菌酸的全面理解对于追求结核病治疗并揭示其致病机制的复杂性至关重要。
a 意大利理工学院可持续未来技术中心 (CSFT)@Polito,Via Livorno 60,都灵,10144,意大利 b 应用大分子化学系,聚合物科学与技术研究所,高级科学研究委员会 (CSIC),C/Juan de la Cierva 3,马德里,28006,西班牙 c 都灵理工大学应用科学与技术系,C.so Duca degli Abruzzi 24,10129 都灵,意大利 d 有机合成与生物评价组,多学科研究所 (UCM),ICTP 关联单位,IQM (CSIC),Paseo de Juan XXIII 1,马德里,28040,西班牙 e 都灵大学化学与地质科学系,Paseo de Juan XXIII 1,马德里,28040,西班牙卡利亚里研究,Via Università 40,09124 卡利亚里,意大利 关键词:海藻酸盐、点击化学、硫醇-烯反应、水凝胶、3D 打印、DLP、组织工程
CRISPR-Cas 技术可以对植物基因组进行精确修改,有望彻底改变农业。这些技术依赖于将编辑组件递送到植物细胞中以及再生完全编辑的植物。在无性繁殖植物(例如葡萄)中,原生质体培养是生产非嵌合和无转基因的基因组编辑植物的最佳途径之一。然而,植物从原生质体再生能力较差,阻碍了其用于基因组编辑的实施。在这里,我们报告了一种从来自多个葡萄品种的原生质体再生植物的有效方案。通过将原生质体封装在海藻酸钙珠中并与饲养层培养物共培养,原生质体分裂形成愈伤组织菌落,再生成胚胎并最终再生为植物。该方案成功应用于酿酒葡萄和鲜食葡萄(Vitis vinifera)品种,以及葡萄砧木和葡萄树野生近缘种 Vitis arizonica。此外,通过用 CRISPR-质粒或核糖核蛋白 (RNP) 复合物转染原生质体,我们在三个品种和 V. arizonica 中再生了 VvPHYTOENE DESATURASE 基因经过编辑的白化植物。结果揭示了该平台在促进葡萄属物种基因组编辑方面的潜力。
水凝胶泡沫广泛用于生物材料、化妆品、食品或农业等许多应用。然而,需要精确控制泡沫形态(气泡大小或形状、连通性、壁和支柱厚度、均匀性)以优化其性能。因此,这里提出了一种从液体泡沫模板生成、控制和表征水凝胶泡沫形态的方法:以海藻酸盐-CaHPO 4 基水凝胶泡沫为例,通过将氮气通过喷嘴吹入溶液中来提供高度可控的发泡过程,从而产生具有毫米级气泡的水凝胶泡沫。首先实施了泡沫组成材料的流变学表征方案,并强调了初始液体泡沫特性以及凝固动力学和泡沫老化机制之间的竞争对所得形态的影响。然后,对正在凝固和已凝固样品进行的 X 射线断层扫描表征表明,通过控制泡沫配方的时间演变,可以调整藻酸盐泡沫的最终形态。只要凝固过程发生的时间比泡沫不稳定机制短,这种方法就可以适应其他水凝胶或聚合物配方、泡沫特性和长度尺度。
水凝胶泡沫被广泛用于许多应用,例如生物材料,宇宙,食品或农业。然而,需要控制泡沫形态(气泡大小或形状,连通性,墙壁和支撑厚,同质性)才能优化其性质。Therefore, a method is proposed here for generating, controlling, and characterizing the morphology of hydrogel foams from liquid foam templates: Using the example of Alginate-CaHPO 4 -based hy- drogel foams, a highly controllable foaming process is provided by bubbling ni- trogen through nozzles into the solution, which produces hydrogel foams with millimeter-sized bubbles.首先实施了泡沫组成材料的一种流变特性方案,并突出了初始液体泡沫特性的影响以及固化动力学与泡沫衰老机制对所得形态学的竞争。X射线层析成像表征对固化和固化样品进行了表明,通过通过其配方来控制泡沫的时间演化,可以调整藻酸盐泡沫的最终形态。该方法可以适用于其他水凝胶或聚合物制剂,泡沫特性和长度尺度,一旦固化过程发生在时间尺度上,而不是泡沫破坏稳定机制。
开发用于修复临界骨缺损的脚手架的发展在很大程度上依赖于建立神经血管化的网络,以适当地渗透神经和血管。尽管在使用注入各种代理的人造骨状脚手架方面取得了重大进步,但仍然存在挑战。天然骨组织由一个多孔骨基质组成,该骨基质被神经血管化的骨膜包围,具有独特的压电特性,对骨骼生长必不可少。从该组件中汲取灵感,我们开发了一种模仿骨膜骨骨架的脚手架支架,具有压电特性,用于再生临界骨缺损。该支架的骨膜样层具有双网络水凝胶,由螯合的藻酸盐,明胶甲基丙烯酸酯和烧结的whitlockite纳米颗粒组成,模仿天然骨膜的粘弹性和压电性能。骨状层由壳聚糖和生物活性羟基磷灰石的多孔结构组成。与常规的骨状支架不同,这种生物启发的双层支架显着增强了成骨,血管生成和神经发生,结合了低强度脉冲超声辅助压电刺激。这样的方案增强了体内神经血管化的骨再生。结果表明,双层支架可以作为在动态物理刺激下加快骨再生的有效自动电刺激器。
摘要:生物纳米复合药物载体研究是活性物质递送领域的一个关键领域,引入了改善药物治疗的创新方法。此类药物载体在提高活性物质的生物利用度、影响治疗效率和精确度方面发挥着至关重要的作用。通过使用这些先进的载体,可以将药物靶向递送到目标作用位点并最大限度地降低对身体的毒性。最近的研究集中在基于生物聚合物的生物纳米复合结构上,包括脂质、多糖和蛋白质。本综述论文重点介绍了含脂质的纳米复合载体(包括脂质体、脂质乳剂、脂质纳米颗粒、固体脂质纳米颗粒和纳米结构脂质载体)、含多糖的纳米复合载体(包括海藻酸盐和纤维素)和含蛋白质的纳米复合载体(例如明胶和白蛋白)。许多研究表明,此类载体能够有效装载治疗物质并精确控制药物释放。它们还表现出理想的生物相容性,这对其在药物治疗中的潜在应用是一个有希望的迹象。生物纳米复合药物载体的发展表明了一种改进药物输送过程的新方法,有可能为药理学领域的重大进步做出贡献,提高治疗效果,同时最大限度地减少副作用。
街头食品是印度烹饪文化不可或缺的一部分,为顾客提供了多种负担得起的选择。但是,由于基础设施不足和街头小贩的瞬时性质,人们对与街头食品消费有关的公众健康风险的担忧持续存在。受污染的街头食品会导致食源性疾病,例如胃肠炎,伤寒,肺炎,食物中毒和丙型肝炎A。益生菌是有益的细菌,可以通过靶向特定的感染来有效。富含益生菌的果实饮料提出了一种创新的方法,可改善人口营养和益生菌提供。乳杆菌Gasseri是一种革兰氏阳性细菌,由于其对酸度的抗性和对肠道健康的有益作用,因此被证明是有希望的益生菌菌株。藻酸盐封装改善了益生菌菌株的稳定性和释放。益生菌果汁可以由富含抗氧化剂和养分的水果制成,例如西番茄,fragaria ananassa和phyllanthus emblica。这项研究的目的是使用分子方法来发现从街头食品中分离出来的klebsiella aerogenes(pp335235)。该研究还试图确定分离株的抗生素灵敏度模式,并探索用乳糖乳杆菌将果汁加固的潜力,作为益生菌营养的治疗策略。
为流体力学学生项目制作风洞模型的替代方法摘要基于项目的工程教育方法使得学生希望在流体力学课程中创建功能性风洞模型来测试原始设计。本文根据成本、生产时间、易用性以及设备和材料的可及性,比较了几种快速原型 (RP) 方法与用于制造流体动力学模型的传统模具/铸造技术。考虑的 RP 技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工。这些方法从数字格式的原始设计开始,而传统方法(例如使用硅橡胶或藻酸盐模具铸造)至少需要粗略的物理原型。还讨论了 RP 模型的涂层和精加工工艺。背景和介绍 德克萨斯大学奥斯汀分校机械工程系已开展了 6 年的综合计划,旨在在整个本科课程中实施基于项目的方法 [1]。该计划的一个要素包括与流体力学入门课程同时进行的风洞测试。本科流体力学实验室有两个风洞,分别有 12"x12" 和 24"x24" 的测试部分。目前,学生仅使用风洞进行经典实验,使用现成的模型(例如横流中的圆柱体和翼型)以及进行流动可视化演示。被测试的对象形状简单,提供有限的创造性实验机会。我们希望通过为学生提供设计和测试原始空气动力学模型(例如汽车车身形状)的机会来增强这种体验。这促使人们研究快速生产原始设计风洞模型的替代方法。考虑了两种根本不同的方法:(1)从粗糙的物理原型开始成型/铸造模型和(2)从数字图像创建功能性物理模型。成型/铸造技术能够生产所有尺寸和几何公差的模型。这些方法可以利用各种不同的材料进行模具制作和铸造,包括热熔胶、乳胶、硅橡胶、聚硫橡胶、聚氨酯、藻酸盐、塑料树脂、环氧树脂、蜡、泡沫、粘土和水基石膏或混凝土。设备和该多步骤过程可能很长,并且需要一定的技能来形成可重复使用的模具和铸造模型。快速原型 (RP) 是指直接从 CAD 文件制造物理对象的过程。此类原型技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工等工艺。这些工艺中的每一个都会产生耐用、持久的模型,并且可以通过各种二次表面处理来增强其性能。
为流体力学学生项目制作风洞模型的替代方法摘要基于项目的工程教育方法使得学生希望在流体力学课程中创建功能性风洞模型来测试原始设计。本文根据成本、生产时间、易用性以及设备和材料的可及性,比较了几种快速原型 (RP) 方法与用于制造流体动力学模型的传统模具/铸造技术。考虑的 RP 技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工。这些方法从数字格式的原始设计开始,而传统方法(例如使用硅橡胶或藻酸盐模具铸造)至少需要粗略的物理原型。还讨论了 RP 模型的涂层和精加工工艺。背景和介绍 德克萨斯大学奥斯汀分校机械工程系已开展了 6 年的综合计划,旨在在整个本科课程中实施基于项目的方法 [1]。该计划的一个要素包括与流体力学入门课程同时进行的风洞测试。本科流体力学实验室有两个风洞,分别有 12"x12" 和 24"x24" 的测试部分。目前,学生仅使用风洞进行经典实验,使用现成的模型(例如横流中的圆柱体和翼型)以及进行流动可视化演示。被测试的对象是简单的形状,为创造性实验提供了有限的机会。我们希望通过为学生提供设计和测试原始空气动力学模型(例如汽车车身形状)的机会来增强这种体验。这促使人们研究快速生产原始设计风洞模型的替代方法。考虑了两种根本不同的方法:(1)从粗糙的物理原型开始成型/铸造模型和(2)从数字图像创建功能性物理模型。成型/铸造技术能够生产所有尺寸和几何公差的模型。这些方法可以利用各种不同的材料进行模具制作和铸造,包括热熔胶、乳胶、硅橡胶、聚硫橡胶、聚氨酯、藻酸盐、塑料树脂、环氧树脂、蜡、泡沫、粘土和水基石膏或混凝土。设备和该多步骤过程可能很长,并且需要一定的技能来形成可重复使用的模具和铸造模型。快速原型 (RP) 是指直接从 CAD 文件制造物理对象的过程。此类原型技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工等工艺。这些工艺中的每一个都会产生耐用、持久的模型,并且可以通过各种二次表面处理来增强其性能。
