后生物学,代表生物学家族的最新成员,是由于乳酸细菌(LAB)在de Man,Rogosa和Sharpe(MRS)中的发酵而产生的代谢产物,其中包括蛋白质,糖和矿物质。生物后的成分包括外多糖(EPS),短链脂肪酸(SCFA),细菌素,抗氧化剂和代谢酶。几项研究表明,生物学后具有多种特性,例如抗菌,免疫调节,抗氧化剂,抗炎,抗肥胖,抗糖尿病和抗肿瘤特性。天然多糖是指从包括藻类,植物,动物和微生物在内的生物生物中获得的多糖。多糖是分支或线性大分子,由几种主要和一些次要的单糖组成,包括葡萄糖,果糖,果糖,甘露糖,阿拉伯糖,半乳糖糖,半乳糖酸酯,半乳糖醛酸,葡萄糖糖胺,半乳糖胺或衍生物。类似于生物后,多糖也表现出抗炎,抗菌,抗肿瘤,抗病毒,免疫调节和抗氧化特性。尽管由于缺乏特定的酶,人体不能直接消化多糖,但可以通过肠道遗留细菌(包括但不限于实验室)消化它们。最近的研究表明,大量的非淀粉多糖,例如藻酸盐,富藻酸酯,壳聚糖,角叉菜胶和瓜尔胶可以降解为低分子量的寡糖寡糖,这反过来又可以为人类健康提供健康益处。这些新发现激发了我们提出基于多糖后的后生物学,也称为糖培养基及其潜在应用。我们建议可以通过益生菌发酵多糖,随后的细菌去除将提高其生产的代谢产物的安全性,包括寡糖,二糖,单糖和衍生物。这些基于多糖的后生物学可能模仿体外多糖的代谢,从而扩大了生物后的应用。诸如Akkermansia Muciniphila和其他细菌等非刺激药也可以用于糖生物生产,从而为人类健康提供了新的应用。
*相应的作者在:Coimbra大学药学系科伊布拉大学药学系,葡萄牙Coimbra大学,葡萄牙(F. Veiga)(F. Veiga),Requin/Laqv,药物技术小组,Coimbra University of Coimbra University of Coimbra University of Coimbra,Coimbra,Coimbra,paruga,paruga,A。c。电子邮件地址:fveiga@ci.uc.pt(F。Veiga),acsantos@ff.uc.pt(A.C。Paiva-Santos)。
海藻因其细胞壁多糖(例如琼脂,阿尔金,角叉菜胶等)以及肥料,饲料和生物活性代谢物而被商业地利用。海藻也代表了脂肪酸,维生素和矿物质的极好来源。它们是由分类学杰出的绿色(叶绿体),棕色(Phaeophyta)和红色(Rhodophyta)海藻组成的海洋大植物。这些海藻资源在我们的半岛海岸线以及安达曼 - 尼科巴尔(Andaman-Nicobar)和lakshadweep群岛上的潮汐和潮汐间水中最佳增长。印度被赋予超过206万吨的湿湿生物质,属于700种。,将近60种对它们的多糖和继发代谢物在经济上很重要。每年从印度的野外收获约20,000吨(湿重)。印度对海藻的商业开发已于1966年开始。海藻(例如Gelidiella,Gracilaria和Sargassum)一直从印度出口到1975年。,但是,印度政府考虑到当地琼脂和阿尔金工业的需要,后来禁止出口。但是,印度的海藻行业尚未生产所需数量的藻酸钠和琼脂。结果,印度每年都会进口琼脂和阿尔金,花费大量外汇。目前,来自古吉拉特邦海岸的海藻和泰米尔纳德邦的许多地区都是由小型和大型行业收获的。该电台还开发了一种用于从Gracilaria spp生产琼脂的家庭手工业方法。自1972年以来,印度的ICAR中央海洋渔业研究所(CMFRI)一直在印度开展海藻马养殖和海藻利用率。CMFRI的Mandapam区域站开发了用于使用筏,coir-Rope Nets/Spore方法的琼脂Gracilaria Edulis的商业规模种植技术。和sargassum spp的藻酸。在1980年代,并向许多农民和企业家展示了琼脂和阿尔金的生产。这些示威活动为在泰米尔纳德邦Madurai的许多小规模琼脂行业开发铺平了方法。
近年来,生物技术的进步使医学质量和结果得到了很大的改善。这些创新也引起了牙科研究领域的极大关注。几十年来,组织(骨和牙)工程等再生医学一直是口腔和颅面研究的热门话题。细胞、信号分子和支架材料是组织工程方法的三个关键组成部分。几乎每天都有新的生物工程方法被提出并测试用于牙科的各种疾病和治疗。间充质干细胞 (MSC) 等干细胞具有多能性,可以分化成不同类型的细胞以进行组织修复和再生。然而,包括表型一致性、宿主免疫反应和潜在致瘤性在内的技术问题仍未完全解决。细胞外囊泡 (EV) 源自细胞内体,含有通过旁分泌靶向细胞的生物活性分子。众所周知,这些 EV 是干细胞产生生物学效应的主要介质之一。 MSC 衍生的 EVs (MSC-EVs) 可能代替 MSCs 用于组织修复和再生。一篇综述讨论了 MCS-EVs 在口腔和颅面组织再生中的现状和未来治疗应用 ( Liu 等人 )。研究表明,人牙龈 MSCs 分泌的 EVs (hGMSC 衍生的 EVs) 可在体内和体外促进成骨和新生血管形成 ( Wang 等人 )。综述了干细胞衍生的 EVs 和非干细胞衍生的 EVs 在骨组织再生 (临界尺寸缺损模型) 中的作用 ( Liu 等人 )。工程改良的 EVs 可能在未来基于无细胞 EV 的骨组织工程疗法中发挥重要作用。新一代支架材料已经用于组织工程。将聚乙烯醇、明胶、海藻酸钠与阿司匹林和纳米羟基磷灰石 (nHAP) 结合,设计了一种多功能结构优化的水凝胶支架。研究了 nHAP 的成骨作用和阿司匹林的抗炎作用
在宏观世界中,我们经常将对环境中物体的操纵视为理所当然。然而,在微观/naiScale上,材料和结构对材料和结构的精确和受控的改变,处理或行动(即操纵)具有高度挑战性,并且由于这些长度尺度上主导相互作用力的缩放效应和增加的复杂性[1],需要新的材料和方法。智能材料(也称为智能或刺激性响应材料)已经改变了各种多学科领域[2],提供了新的可能性,以重新填补我们与小规模世界的互动。它们具有响应各种外部刺激的独特能力,包括热,电气,机械,光学,磁信号,并相应地调整其内在特性[3](图。1)。这种响应能力使他们能够自我实现,自sense,自适应,自我修复甚至自我诊断,这共同赋予他们创建各种智能设备的潜力[4]。在各种智能软材料中,响应各种刺激的变形行为是其功能的关键方面[5]。可以通过各种手段来启动这种变形,包括磁性[6]和声学[7]力或固有性能的替代力,例如水凝胶的亲水/疏水过渡[8]和固定性向异位性液体水晶elas-elas-tomers(lce)[9] [9] [9] [9]。尤其是,通常采用各向异性特性的引导来提高所得变形。以实现所需的变形,通常将功能添加剂(例如磁性和导电颗粒)掺入聚合物基质中[10]。例如,LCE与特定的分子比对进行了精心处理[9],并且轴向排列的LCE沿分子比对表现出收缩(主管)和垂直于主任的扩展。更多,在石墨烯/藻酸盐/藻酸盐制成的纳米复合材料[11]的情况下,由于石墨烯的局部区别对齐,弯曲变形是对刺激的响应。智能材料表现出的这些变形是在微观/纳米级操纵物体的有效催化剂。他们独特的属性
缩写:3D,三维;ABA,氨基苯硼酸;ACC,氨基羧甲基壳聚糖;ACNC,乙酰化纤维素纳米晶体;AF,纤维环;AF127,醛封端的普卢兰尼克 F127;AG-NH2,琼脂糖-乙二胺共轭物;Ag-CA,羧基化琼脂糖;AHA,醛基透明质酸;AHAMA,甲基丙烯酸酯化醛基透明质酸;AHES,醛基羟乙基淀粉;ALG,海藻酸钠;AMP,抗菌肽;APC,抗原呈递细胞;ASF,乙酰化大豆粉;AT,苯胺四聚体;ATAC,2-(丙烯酰氧基)乙基三甲基氯化铵;ATRP,原子转移自由基聚合;Azo,偶氮苯;家蚕,Bombyx mori;BA,硼酸;BCNF,氧化细菌纤维素纳米纤维;Bio-IL,生物离子液体;BMP-2,骨形态发生蛋白 2;BSA,牛血清白蛋白;BTB,硼砂-溴百里酚蓝;Ca-FA,CaCl 2 -甲酸;CA,氰基丙烯酸酯;Cat,含儿茶酚的多巴胺-异硫氰酸酯;Cat-ELPs,儿茶酚功能化的 ELR;CBM,纤维素结合模块;CD,环糊精;CD-HA,β-CD 修饰的透明质酸;CDH,碳酰肼;cGAMP,环状鸟苷单磷酸-腺苷单磷酸;CH,胆固醇半琥珀酸酯;CHI-C,儿茶酚共轭壳聚糖; CL/WS2,二硫化钨-儿茶酚纳米酶;CMs,心肌细胞;CMCS,羧甲基壳聚糖;CNC,纤维素纳米晶体;CNF,纤维素纳米纤维;CNT,碳纳米管;COL,胶原蛋白;CPEs,化学渗透促进剂;CS,硫酸软骨素;CsgA,Curli 特异性纤维亚基 A;CS-NAC,壳聚糖-N-乙酰半胱氨酸;CSF,脑脊液;CTD,C 端结构域;CtNWs,几丁质纳米晶须;D-MA,甲基丙烯酸酯化羟基树枝状聚合物;DAHA,二醛-透明质酸;DCs,树突状细胞;DDA,葡聚糖二醛;dECM,脱细胞 ECM; DEXP,地塞米松磷酸二钠;Dex,葡聚糖;DF-PEG,双醛功能化聚乙二醇;DNNA,双网络神经粘合剂;DOPA,L-3,4-二羟基苯丙氨酸;DOX,阿霉素;DPN,脱细胞周围神经基质;DST,双面胶带;E-tattoo,电子纹身;E. coli,大肠杆菌;ECG,心电图;ECM,细胞外基质;ePTFE,聚四氟乙烯;ELP,弹性蛋白样多肽;ELRs,弹性蛋白样重组体;EMG,肌电图;EPL,ε-聚赖氨酸;EPS,胞外多糖;ER,内质网;FDA,食品药品监督管理局;FGFs,成纤维细胞生长因子;FibGen,京尼平交联纤维蛋白凝胶; FITC,硫氰酸荧光素;FS-NTF,纳米转移体;呋喃,糠胺;GA,没食子酸;GAG,糖胺聚糖;GC,乙二醇壳聚糖;Gel-CDH,碳酰肼修饰明胶;GelDA,多巴胺修饰明胶;GelMA,明胶-甲基丙烯酰;GI,胃肠道;GRF,明胶-间苯二酚-甲醛;GRFG,明胶-间苯二酚-甲醛-戊二醛;H&E,苏木精和伊红;HA,透明质酸;HA-Ac,透明质酸-丙烯酸酯;HA-ADH,己二酸二酰肼修饰透明质酸;HA-ALD,醛修饰透明质酸;HA-NB,硝基苯衍生物修饰透明质酸;HA-PEG,透明质酸-聚乙二醇;HA-PEI,透明质酸-聚乙烯亚胺;HA-SH,硫醇化透明质酸;HAGM,透明质酸甲基丙烯酸缩水甘油酯;HaMA,甲基丙烯酸酯化透明质酸; HAp,羟基磷灰石;HBC,羟丁基壳聚糖;HES,羟乙基淀粉;HFBI,疏水蛋白;HIFU,高强度聚焦超声;hm-Gltn,疏水改性明胶;HPMC,羟丙基甲基纤维素;HRP,辣根过氧化物酶;Hypo-Exo,缺氧刺激的外泌体;ICG,吲哚菁绿;iCMBAs,基于柠檬酸盐的受贻贝启发的生物粘合剂;IGF,胰岛素样生长因子;iPSC,多能干细胞;IPTG,β-d-1-硫代半乳糖苷;ITZ,伊曲康唑;IVD,椎间盘;JS-Paint,关节表面涂料;KGF,角质形成细胞生长因子;KaMA,甲基丙烯酸酯化κ-角叉菜胶; LAP,苯基-2,4,6-三甲基苯甲酰膦锂盐;LCS,液晶;LCST,低临界溶解温度;LDH,层状双氢氧化物;LDV,亮氨酸-天冬氨酸-缬氨酸;LM,液态金属;m-AHA,单醛透明质酸;MA,甲基丙烯酸酐;MADDS,粘膜粘附药物递送系统;MAP,贻贝粘附蛋白;MATAC,2-(甲基丙烯酰氧基)乙基三甲基氯化铵;mAzo-HA,mAzo 修饰透明质酸;MBGN,介孔生物活性玻璃纳米颗粒;MCS,修饰茧片;MDR,多重耐药;mELP,甲基丙烯酰弹性蛋白样多肽;MeTro,甲基丙烯酰取代的原弹性蛋白;Mfp,贻贝足蛋白; MI,心肌梗死;MMP,基质金属蛋白酶;MN,微针;MPs,单分散微粒;MRSA,耐甲氧西林金黄色葡萄球菌;MSC,间充质干细胞;NB,N-(2-氨基乙基)-4-[4-(羟甲基)-2-甲氧基-5-硝基苯氧基]-丁酰胺;NFC,纳米纤维化纤维素;NGCs,神经引导导管;NHS,N-羟基琥珀酰亚胺;NIR,近红外光;NPs,纳米粒子;NTD,N-端结构域;ODex,氧化葡聚糖;OHA-Dop,多巴胺功能化氧化透明质酸;OHC-SA,醛功能化海藻酸钠;OPN,骨桥蛋白; OSA-DA,多巴胺接枝氧化海藻酸钠;OU,口腔溃疡;p-AHA,光诱导醛透明质酸;PAA,聚丙烯酸;PAE,聚酰胺胺-环氧氯丙烷;PAMAM,胺基端基第五代聚酰胺多巴胺;PBA,苯基硼酸;PCL,聚己内酯;PDA,聚多巴胺;PDMS,聚二甲基硅氧烷;PDT,光动力疗法;PEA,2-苯氧乙基丙烯酸酯;PEG,聚乙二醇;PEDOT,聚(3,4 乙烯二氧噻吩);PEI,聚乙烯亚胺;PEGDMA,聚乙二醇二甲基丙烯酸酯;PEMA,2-苯氧乙基甲基丙烯酸酯;PepT-1,肽转运蛋白-1;PG,焦性没食子酚;PGA,聚乙醇酸;pHEAA,聚(N-羟乙基丙烯酰胺);PMAA,羧甲基功能化聚甲基丙烯酸甲酯;PSA,压敏粘合剂;PTA,光热剂;PTT,光热疗法;PVA,聚乙烯醇;QCS,季铵化壳聚糖;rBalcp19k,重组白脊藤 cp19k;RGD,精氨酸-甘氨酸-天冬氨酸;rGO,还原氧化石墨烯; RLP,类弹性蛋白多肽;rMrcp19k,Megabalanus rosa cp19k;ROS,活性氧中间体;rSSps,重组蜘蛛丝蛋白;SCI,脊髓损伤;SCS,蚕茧片;SDBS,十二烷基苯磺酸钠;SDS,十二烷基硫酸钠;SDT,声动力疗法;SF,丝素;sIPN,半互穿聚合物网络;S. aureus,金黄色葡萄球菌;STING,干扰素基因刺激剂;SUPs,超荷电多肽;SY5,外皮蛋白抗体;TA,单宁酸;TEMED,四甲基乙二胺;TEMPO,2,2,6,6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素; Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。
科学环境病毒继续对全球公共卫生构成重大威胁,这是全球死亡率的主要原因之一,每年造成数百万死亡的死亡,这是最近的大流行病[1,2]。临床抗病毒疗法的主要方法涉及使用抗病毒药物以及有症状治疗。然而,抗病毒药物(例如胃肠道,肝脏,肾脏或造血问题)的显着副作用会影响患者的依从性并可能破坏治疗。此外,频繁的病毒突变和单抗病毒机制的有限范围可能导致耐药性,通常会导致治疗衰竭[3,4]。生物材料(例如藻酸盐和壳聚糖)的掺入抗病毒药疗法中提供了明显的好处和新颖的作用机理。抗病毒生物材料通过多种机制(包括身体吸附病毒,干扰病毒 - 细胞相互作用)通过与病毒作为进入抑制剂的结合,诱导不可逆的病毒变形,诱导病毒核酸重复的不可逆性病毒变形,并防止病毒释放从受感染细胞中释放出来。通过病毒 - 生物材料相互作用捕获病毒,而通过应用力捕获病毒结构代表了生物材料的独特抗病毒机制。因此,基于生物材料的抗病毒药进一步提供了新的机制并降低了耐药性的风险,可以在分子抗病毒药中广泛观察到这一点[5]。海洋环境代表了一个未开发的栖息地[9]。在这方面,正在设计许多生物材料与抗病毒药物相结合的病毒感染[6,7]。有趣的是,与常规抗病毒药物相比,各种生物材料制剂在抑制病毒酸复制方面的效率更高[8]。因此,对新型抗病毒材料有迫切的需求,可以有效预防和控制病毒感染,尤其是在生物医学应用的背景下[3,4]。由于海洋化合物的丰度和化学成分,该环境代表了原始生物分子的重要储层。海洋物种,原核生物和真核生物都合成了许多属于各种结构类别的代谢产物,例如糖,颜料,脂质,蛋白质,
益生菌的有益特性一直是一个关注点。益生菌在维持胃肠道(GIT)的健康方面起着重要作用,健康的消化系统负责调节身体的所有其他功能。可以通过用益生元制定益生菌的有效性来增强益生菌的有效性,因此形成的制剂称为合成生物。它不仅可以提高益生菌细胞的生存力和稳定性,还可以抑制致病性菌株的生长。乳杆菌和双歧杆菌属。最常用作益生菌。其他微生物属。是芽孢杆菌,链球菌,肠球菌和糖疗法。益生菌可用于治疗糖尿病,肥胖,炎症,心血管,呼吸道,中枢神经系统疾病(CNS)和消化系统疾病。也必须封装促进肠道健康的活微生物。封装益生菌在生产,储存和胃肠道过境期间的风险保护。热,压力和氧化消除了益生菌及其保护质量。封装益生菌可延长其生存力,促进受调节的释放,减少加工损失,并在功能性食品中应用。益生菌是通过喷雾干燥或共隔术产生的微球。该技术调节肠道益生菌的释放并提供抗压力性。此外,用益生元或维生素封装益生菌会增强其功效。自然封装材料,包括藻酸钠,氯化钙,凝胶珠和多糖,在消化过程中促进益生菌的保障措施。然而,几种方法,包括在加热的空气室内液体雾化的地方喷洒干燥,以蒸发水分并产生干燥颗粒,从而提高益生菌的疗效和稳定性。益生菌通过增强抗体和免疫细胞的产生来增强免疫系统功效。它可以打击疾病并增强免疫力。最近的研究表明,益生菌可能有助于调节体重和血糖水平,并影响代谢和胰岛素敏感性。新兴研究表明,“肠脑轴”连接了心理和胃肠道健康。益生菌可以通过影响神经递质的合成和炎症来减轻焦虑和抑郁。正在研究益生菌的皮肤病学优势,这些益生菌预测益生菌的现场递送,封装是一种有效的技术,需要对研究人员进行更多考虑。本综述着重于益生菌,益生元和综合药在预防和治疗人类健康中的应用。
27. Yang, J.,2022. 一种用于定量预测干湿状态下最大高度变化的聚合物刷理论,预印本,https://arxiv.org/abs/2208.06892 26. Yang, X.、Steck, J.、Yang, J.、Wang, Y. 和 Suo, Z.,2021. 可降解塑料易开裂。工程,7(5),第 624-629 页。 25. Chu, CK、Joseph, AJ、Limjoco, MD、Yang, J.、Bose, S.、Thapa, LS、Langer, R. 和 Anderson, DG,2020. 可扩展透明质酸网络纤维的化学调谐。美国化学会志,142(46),第 19715-19721 页。 24. Yang, J. 、Illeperuma, W. 和 Suo, Z.,2020 年。非弹性增加了水凝胶出现褶皱的临界应变。Extreme Mechanics Letters,第 100966 页。 23. Yang, J. 、Steck, J. 和 Suo, Z.,2020 年。海藻酸盐链通过共价键的凝胶化动力学。Extreme Mechanics Letters,第 100898 页。 22. Yang, J. 、Steck, J.、Bai, R. 和 Suo, Z.,2020 年。拓扑粘附 II。可拉伸粘附。Extreme Mechanics Letters,第 100891 页。 21. Steck, J.、Kim, J.、Yang, J. 、Hassan, S. 和 Suo, Z.,2020 年。拓扑粘附。I。快速且强大的拓扑粘合剂。 Extreme Mechanics Letters,第 100803 页。20. Mu, R.、Yang, J.、Wang, Y.、Wang, Z.、Chen, P.、Sheng, H. 和 Suo, Z.,2020 年。聚合物填充大孔水凝胶可降低摩擦力。Extreme Mechanics Letters,第 100742 页。19. Yang, J.、Bai, R.、Li, J.、Yang, C.、Yao, X.、Liu, Q.、Vlassak, JJ、Mooney, DJ 和 Suo, Z.,2019 年。设计用于干湿粘附的分子拓扑结构。ACS Applied Materials & Interfaces,11(27),第 24802-24811 页。 18. Yang, J. 、Bai, R.、Chen, B. 和 Suo, Z.,2019 年。水凝胶粘附:化学、拓扑和力学的超分子协同作用。Advanced Functional Materials,第 1901693 页。17. Yang, J. 、Jin, L.、Hutchinson, JW 和 Suo, Z.,2019 年。塑性延缓了折痕的形成。固体力学和物理学杂志,123,第 305-314 页。16. Yang, X.#、Yang, J.#、Chen, L. 和 Suo, Z.,2019 年。橡胶网络中的水解裂纹。Extreme Mechanics Letters,第 100531 页。
囊性纤维化(CF)患者的肺肺部容易受到铜绿假单胞菌的感染(1)。cf肺通常由形成生物膜的非粘液铜绿假单胞菌菌株定植,并且在粘液菌株过量产生藻酸盐的出现后发生慢性感染(2)。他们的生物膜对抗生素和IMUNE介质具有高度抗性,并导致肺部下降(2,3)。铜绿假单胞菌菌株是从慢性感染的成年CF患者的痰液样本中分离出来的,并在法国南特的中心医院大学中心。由于这些痰样品仅用于分离细菌,但不用于人类细胞或人类DNA,因此法国法律(2016-1537,2016年11月16日)不要求由机构伦理委员会审查和批准该研究或参与者提供书面或言语知情的同意。细菌,并使用基质辅助激光解吸离子 - 流量质量光谱法(MALDI-TOF MS [VITEK; VITEK; BIOMERIERIEUX; BIOMERIERIEUX,MARCY-LECELANCE,france)鉴定为铜绿假单胞菌。使用了每个患者的单个分离株。主要基于它们的生物膜结构和粘液表型,分离株MUC-N1,MUC-N2,MUC-P4和MUC-P5被选择构成用于测试抗体FILM化合物的应变板(M. Simon,E.Pernet,E.Pernet,E.Pernet,E.Jouault,A.Jouault,E.Portier,E.M.Boukigb,S.Boukig,S。Pinaud,C。 POC-Duclairoir,M。G。J. Feuilloley,O。Lesouhaitier,J。Caillon,S。Chevalier,A。Bazire和A. Dufour,提交出版),促使我们对其基因组进行了测序。在37°C下在液体LB培养基中生长在LB琼脂板中挑选的单个菌落接种的液体LB培养基中生长,并使用基因组基因组DNA纯化试剂盒(Fisher Fisher Scientifip,France,France)使用基因组基因组DNA纯化的基因组DNA,并使用手机的推荐并评估了双重态度(There the)。量子液计(Thermo Fisher Scientifim,美国)和1%琼脂糖凝胶电泳。 使用Illumina Nextera XT DNA库准备套件制备了测序库,按照制造商的协议。 在Miseq仪器(LMSM基因组平台,Rouen Normandy University,Evreux,France,France,France)上进行了测序,并使用Miseq Reagent Kit Kit Kit v.3(2 250 BP)进行了双指数配对末端读数。 默认参数用于所有软件,除非另有说明。 使用Trimmomatic V.0.36(4)对读数进行修剪,并使用Multiqc 检查其质量在LB琼脂板中挑选的单个菌落接种的液体LB培养基中生长,并使用基因组基因组DNA纯化试剂盒(Fisher Fisher Scientifip,France,France)使用基因组基因组DNA纯化的基因组DNA,并使用手机的推荐并评估了双重态度(There the)。量子液计(Thermo Fisher Scientifim,美国)和1%琼脂糖凝胶电泳。使用Illumina Nextera XT DNA库准备套件制备了测序库,按照制造商的协议。在Miseq仪器(LMSM基因组平台,Rouen Normandy University,Evreux,France,France,France)上进行了测序,并使用Miseq Reagent Kit Kit Kit v.3(2 250 BP)进行了双指数配对末端读数。默认参数用于所有软件,除非另有说明。使用Trimmomatic V.0.36(4)对读数进行修剪,并使用Multiqc
