本文介绍了我们针对 2021 年人工智能城市挑战赛 (AICITY21) 的 Track2 的解决方案。Track2 是一个使用真实世界数据和合成数据的车辆重新识别 (ReID) 任务。在本次挑战中,我们主要关注四个点,即训练数据、无监督领域自适应 (UDA) 训练、后处理、模型集成。(1)裁剪训练数据和使用合成数据都可以帮助模型学习更多判别性特征。(2)由于测试集中有一个在训练集中未出现的新场景,因此 UDA 方法在挑战中表现良好。(3)后处理技术包括重新排名、图像到轨迹检索、摄像头间融合等,可显著提高最终性能。(4)我们集成了基于 CNN 的模型和基于 Transformer 的模型,它们提供了不同的表示多样性。通过上述技巧,我们的方法最终取得了 0.7445 的 mAP 分数,在比赛中获得第一名。代码可在 https://github.com/michuanhaohao/AICITY2021_Track2_DMT 获得。
支持AI的合成生物学具有巨大的潜力,但也显着增加了生物风格,并带来了一系列新的双重使用问题。鉴于通过结合新兴技术所设想的巨大创新,随着AI支持的合成生物学可能将生物工程扩展到工业生物制造中,因此情况变得复杂。但是,文献综述表明,诸如保持合理的创新范围或更加雄心勃勃的目标以促进巨大的生物经济性不一定与生物安全对比,但需要齐头并进。本文介绍了这些问题的文献综述,并描述了新兴的政策和实践框架,这些框架横渡了指挥和控制,管理,自下而上和自由放任的选择。如何实现预防和缓解未来AI支持的Biohazards,故意滥用或公共领域的预防和缓解未来的生物危害的方法,将不断发展,并且应不断发展,并且应出现自适应,互动方法。尽管生物风格受到既定的治理制度的约束,而且科学家通常遵守生物安全方案,甚至实验性,但科学家的合法使用可能会导致意外的发展。生成AI实现的聊天机器人的最新进展激起了人们对先进的生物学见解更容易获得恶性个人或组织的恐惧。鉴于这些问题,社会需要重新考虑应如何控制AI支持AI的合成生物学。建议可视化手头挑战的建议方法是whack-a摩尔治理,尽管新兴解决方案也许也没有那么不同。
药品价值链(包括临床试验、定价、获取途径和报销)是为传统单一疗法设计的。尽管已经发生了范式转变,增加了靶向联合疗法 (TCT) 的相关性,但法规和常规做法的适应速度很慢。我们探索了 9 个欧洲国家 17 家领先癌症机构的 19 位专家报告的 23 种晚期黑色素瘤和肺癌 TCT 的获取途径。我们发现,各国患者获取 TCT 的途径存在差异,各国特定法规存在差异,黑色素瘤和肺癌的临床实践也存在差异。更适合联合疗法背景的法规可以提高整个欧洲获取的公平性,并促进基于证据和授权使用联合疗法。
一起在机器人团队加入了将近两年,这使我们想知道是什么真正使机器人运作。可以更好地了解机器人的技术组件可以帮助我们改善机械组件,并使机器人在整体设计方面更有效,更好。我们的目标是了解制造机器人的Vex组件,我们可以了解所有能力,我们认为最好的起点是与大脑一起使用。我们将其作为教育自己以及计划中的其他团队的机会,以了解大脑为完整的机器人做出贡献的事情。
菲律宾于1980年在菲律宾菲律宾大学(UPLB)的国家分子生物学和生物技术学院(Biotech)正式创建其生物技术研究。在1995年,菲律宾系统中建立了其他三个生物技术学院。他们位于UP Diliman校园中,专注于工业生物技术,UP Manila专注于人类健康生物技术,以及UP Visayas专注于海洋生物技术。UPLosBaños的生物技术研究所继续在农业,林业,工业和环境生物技术学方面提供领导地位。UPLB的其他研究机构也正在进行生物技术研究。包括植物育种研究所,生物科学研究所,动物科学研究所,食品科学技术知名人士以及林业与自然资源学院。外部UPLB,其他研究机构和中心,例如菲律宾稻米研究所,菲律宾椰子管理局,棉花研发研究所,工厂内工业局,动物行业局和
生成人工智能(Genai)的出现和日益普及有可能改变法医精神病学和刑事司法的AI应用,传统上依赖于歧视性的AI算法。生成的AI模型标志着从以前流行的范式中通过生成看似新的现实数据并分析和集成了来自不同数据格式的大量非结构化内容的能力的显着转变。这种潜力不仅仅是重塑常规做法,例如风险评估,诊断支持以及治疗和康复计划,还可以在以前未经置换的领域(例如培训和教育)中创造新的机会。本文研究了生成人工智能对法医精神病学和刑事司法中AI应用的变革性影响。首先,它引入了生成AI及其普遍模型。之后,它回顾了法医精神病学中歧视性AI的当前应用。随后,它对生成AI的潜力进行了彻底的探索,可以通过多模式生成模型,数据生成和数据增强来改变既定的实践并引入新颖的应用。最后,它提供了与部署生成AI模型相关的道德和法律问题的全面概述,重点是他们对个人的影响以及其更广泛的社会影响。总而言之,本文旨在为在法医背景下生成AI应用的动态挑战的持续论述做出贡献,突出了潜在的机会,风险和挑战。它提倡跨学科的合作,并强调对生成AI模型进行彻底,负责任的评估的必要性,然后在广泛采用的决策中常规地做出了实质性的改变后果。
Dr. Prakash C. Gupta Director, Healis- Sekhsaria Institute for Public Health, Navi Mumbai-400701 Dr. Sitanshu Sekhar Kar Professor, Department of Preventive and Social Medicine, JIPMER, Puducherry- 605006 Dr. Avinash Sunthlia Senior Medical Officer - NTCP, Ministry of Health and Family Welfare, GOI, Nirman Bhawan, Maulana Azad新德里路--110108印度最高法院兰吉特·辛格法律专家,新德里 - 110001 11:25 - 11:30 AM由首席嘉宾Leimapokpam Swasticharan博士致辞
图像超分辨率是最流行的计算机视觉问题之一,在移动设备上有许多重要的应用。虽然已经为这项任务提出了许多解决方案,但它们通常甚至没有针对常见的智能手机 AI 硬件进行优化,更不用说通常仅支持 INT8 推理的更受限的智能电视平台了。为了解决这个问题,我们推出了第一个移动 AI 挑战赛,其目标是开发一种基于端到端深度学习的图像超分辨率解决方案,该解决方案可以在移动或边缘 NPU 上展示实时性能。为此,为参与者提供了 DIV2K 数据集和训练过的量化模型,以进行高效的 3 倍图像升级。所有模型的运行时间都在 Synaptics VS680 智能家居板上进行评估,该板具有能够加速量化神经网络的专用 NPU。所提出的解决方案与所有主流移动 AI 加速器完全兼容,能够在 40-60 毫秒内重建全高清图像,同时实现高保真度结果。本文提供了挑战赛中开发的所有模型的详细描述。
关于电池劳动力挑战:电池劳动力挑战赛(Battchallenge)是由美国能源部(DOE)和Stellantis赞助的大学工程竞赛,由Argonne National Laboratory管理。Battchallenge是35年以上高级车辆技术竞赛(AVTC)的一部分。AVTC是DOE的一系列多年汽车工程竞赛,DOE为未来的汽车工程师和行业领导者提供的旗舰劳动力开发计划。他们的最新竞争,电池劳动力挑战赛是一项全面的电动汽车和电池劳动力开发计划,通过建立一个教育生态系统来培养多样的人才管道,该系统为高中毕业生,职业和过渡工作者提供培训和教育,以及可以为北美电池行业远足充电的技术人员。
摘要 - 本文描述了一种称为仙人掌的输入空间建模和测试生成方法(具有组合测试的挑战性自治),该方法为自主系统创建了一系列“挑战场景”。尽管自主系统的参数空间是广泛的,但仙人掌有助于使用组合测试以及通过将专家判断到场景的制定中减少参数空间。可以在适当的测试基础结构(例如模拟器或循环测试)上执行所得场景。仙人掌可用于锻炼系统,作为获得符合ISO 21448或UL 4600等标准的努力的一部分。该方法用于生成商用自动驾驶汽车感知系统的测试方案。索引术语 - 跨越测试,输入建模,Au ossos Systems,自动驾驶汽车