原发性中枢神经系统淋巴瘤(PCNSL)是与中枢神经系统相关的非霍奇金淋巴瘤(NHL)。大多数患者最终出现复发/难治性(R/R)PCNSL,PCNSL的总体预后仍然令人沮丧。最近,基因测序,转录组测序和单细胞测序平台提供了大量数据,揭示了PCNSL中发病机理和耐药性的基础机制,包括肿瘤细胞中NF-K B信号途径的激活,肿瘤细胞,肿瘤的异质性和免疫质量tumoremronosemronosmorodronenment。PCNSL分子病理学研究的进步已导致确定新的治疗靶标并开发新的药物。新的治疗策略,例如创建小分子靶向剂,免疫调节药物,免疫检查点抑制剂和嵌合抗原受体T(CAR-T)细胞疗法,为PCNSL患者带来了新的希望,尤其是R/R PCNSL。本综述提出了PCNSL治疗,审查和讨论有针对性治疗和免疫疗法的效率和挑战的最新进展,并为PCNSL治疗策略的未来发展提供了前景。
适合 5 年级及以上:2 小时模拟太空任务适合 5 年级及以上学生。实地考察是学校课堂上 5-6 周学习单元的总结。在访问我们的中心之前,必须至少学习五节 20 分钟的课程,以便学生为亲身体验做好准备。课程涵盖应用科学、数学、技术和语言艺术。此外,模拟结构提供了强大的团队建设组件。学生在八个团队中的一个工作,每个团队都有自己的数据收集、实验,是成功完成任务不可或缺的一部分。有三个不同的场景,每个场景都在一年中的特定时间飞行。选择包括:
1。Introduction................................................................................................. 1
利用细菌代谢物的免疫调节潜力为治疗各种免疫相关疾病的令人兴奋的可能性。但是,将这种潜力变成现实带来了重大挑战。本综述调查了这些挑战,重点是发现,生产,表征,稳定,配方,安全性和个人可变性限制。强调了许多代谢产物的有限生物利用度以及潜在的改进以及脱靶效应的潜力和精确靶向的重要性。此外,研究了肠道细菌代谢物与微生物组之间的复杂相互作用,强调了个性化方法的重要性。我们通过讨论宏基因组学,代谢组学,合成生物学和靶向递送系统的有希望的进步来结束,这对克服这些局限性并为细菌代谢物作为有效免疫调节剂的临床翻译铺平了希望。
胡一鹏 1,2,4 约瑟夫·雅各布 1,3 杰弗里·JM·帕克 1,5,6 大卫·J·霍克斯 1,2,4 约翰·R·赫斯特 3 丹奈尔·斯托亚诺夫 1,2,5 1 伦敦大学学院医学图像计算中心,2 威康/EPSRC 介入和外科科学中心,3 伦敦大学学院呼吸科,4 医学物理和生物医学工程系,5 计算机科学系,伦敦大学学院,Gower Street,伦敦 WC1E 6BT,英国 6 Bioxydyn Limited,Pencroft Way,曼彻斯特,M15 6SZ,英国 通信:yipeng.hu@ucl.ac.uk 由严重急性呼吸系统综合症冠状病毒 2 引起的 COVID-19 大流行,发生在一个被基于大数据、计算能力和神经网络的人工智能(AI)迅速改变的世界。近年来,这些网络的目光越来越多地转向医疗保健领域的应用。COVID-19 是一种全球性疾病,对健康和经济造成破坏,或许不可避免地会吸引全球学术界和工业界的计算机科学家的关注和资源。AI 支持应对疫情的潜力已在广泛的临床和社会挑战 [1] 中提出,包括疾病预测、监测和抗病毒药物发现。随着疫情对世界人民、工业和经济的影响不断扩大,这种情况可能会持续下去,但对当前疫情的一个令人惊讶的观察是,迄今为止,AI 在 COVID-19 管理中的影响有限。本通讯重点探讨了在前线医疗服务中未能成功采用为 COVID-19 诊断和预后开发的 AI 模型的潜在原因。我们强调了模型在疫情的不同阶段必须解决的不断变化的临床需求,并解释了将模型转化为反映当地医疗环境的重要性。我们认为,基础研究和应用研究对于加速人工智能模型的潜力都至关重要,在迅速发展的疫情期间尤其如此。 从这个角度看,对 COVID-19 的反应,或许可以让我们一窥全球科学界应如何应对未来的疾病爆发,以更有效地应对。
身体残疾一直是我们社区面临的一个大问题。衰老、疾病和其他变量都是造成这些问题的原因。这就是为什么电动轮椅被设计用来帮助身体残疾人的原因。轮椅使用者已经接触过各种旨在提高其行动能力的辅助技术。因此,不同的辅助技术最近在帮助轮椅使用者移动方面发挥了重要作用,这是因为技术变化太快了。最近流行的辅助技术包括操纵杆、脑机接口、语音识别、舌头驱动系统、眼动追踪器和吸气和吹气。然而,由于某些国家/地区个人之间的技术差距,一些最有益的辅助技术变得难以利用。本研究的目的是研究和回顾这些身体残疾辅助技术的比较研究。在研究中,将舌头驱动系统、眼动追踪器、语音识别和吸气和吹气技术与操纵杆辅助技术进行了比较。比较基于选定的参数,包括可用性命令、疲劳、响应时间、信息传输速率、效果和成本。根据研究结果,研究人员提出了适合发展中国家的配备辅助技术的轮椅设计方案。关键词:身体残疾、电动轮椅、辅助技术、发展中国家。_______________________________________________________________________________________________ 1. 引言
为了减少二氧化碳排放,人们正在进行前所未有的研究,以开发高效、廉价的电动汽车和固定式储能系统,用于风能和太阳能等间歇性(可再生)能源产生的能量。1,2 在这方面,越来越多的基于钠 (Na)、镁 (Mg) 和铝 (Al) 的电池受到关注,因为这些元素在地球上含量丰富,因此与代表目前商业标准的锂 (Li) 离子电池 (LIB) 相比,它们的总体成本可能更低。3,4 然而,用钠、镁或铝离子取代锂离子需要对此类电池的阴极和电解质材料以及电化学进行深入的修订和重新探索。在此,我们简要回顾了基于地球丰富元素的新兴电池技术——不包括已经成熟的系统,例如铅酸电池和钠硫电池以及基于硫/空气阴极的后锂离子电池——并讨论它们各自的优缺点。人们认识到,基于钾 (K) 的电池作为一种低成本电池技术开始引起人们的关注,5 但为了简洁起见,本文将省略它。可充电电池的工作原理是基于阳极材料(负极,“还原剂”)和阴极材料(正极材料,“氧化剂”)之间的可逆氧化还原反应。阳极和阴极材料在空间上
这一宝贵的数据集为多项关键挑战提供了机会。其中一项挑战是了解人们在编码新记忆(例如视频内容的记忆)时大脑如何对信息进行优先排序。动物研究的著名理论和发现表明,巩固此类记忆涉及在睡眠和休息期间重播神经模式(参见 Liu 等人,2019 年;van der Meer 等人,2020 年);然而,几乎没有关于人类这些机制的直接证据。确认人类在睡眠期间的重播对于已知与睡眠障碍有关的精神健康障碍(例如焦虑和抑郁)具有重要意义。因此,这一挑战将使我们能够研究信息在睡眠期间存储和重新激活的基本机制。
本文比较了不同的船舶性能建模方法,目的是找到最适合运营优化的建模技术。特别强调了机器学习等数据驱动方法的潜力和挑战。与中午报告相比,使用基于传感器数据的数据驱动方法的附加值是量化的。除了行业标准方法之外,还提出了一种基于物理信息机器学习的新方法,称为“船舶内核”。船舶内核在短期准确性方面优于此处考虑的其他方法。这使它们成为需要对广泛条件进行预测的运营优化(例如路线和速度优化)的理想构建块。与其他方法相比,船舶内核具有出色的长期准确性,使其成为性能监控用例(例如与船体和螺旋桨性能相关的维护计划)的宝贵工具。本文最后对机器学习操作化面临的挑战进行了总体评论和警告。
Aera Technology 是一家决策智能公司。我们的创新云平台可与您现有的系统集成,以数字化、增强和自动化决策