摘要:由钾和一氧化碳制成的凝结相的计算探索导致预测由环状六元的氧化碳阴离子和K +阳离子组成的稳定盐,k n(C 6 O 6)m。在半导体和金属相中,这些系统中的降低状态范围很大,C 6 O 6分子正式降低-2,-3,-3.5和-6。特别关注K 3 C 6 O 6,其中三分激发的激进阴离子在一维中紧密且平衡地堆叠。自由基的等距相互作用极为罕见,通常由于自发的对称性破坏,PEIERLS或JAHN-TELLER失真而不稳定。K 3 C 6 O 6的显着例外是通过相互间隔的多中心键(也称为煎饼键)与大离子拒绝的相结合来解释的。这种引人入胜的相互作用促进了在费米水平上极高的状态密度,并导致我们预测极端金属性,电阻率的负温度系数以及在环境压力条件下的稀有π波段超导率。这些预测振兴了使用金属盐的分子设计来搜索新的有机导体和超导体。
任何人都可以自由访问可作为“开放访问”的作品的全文。可根据创意共享许可提供的作品可根据所述许可条款和条件使用。使用所有其他作品的使用要求正确持有人(作者或出版商)同意,如果不符合适用法律的版权保护。
在2024年,全球经济的周期性失衡逐渐缓解,并得到了主要经济体经济活动的改善。这些趋势以及限制性的货币政策,导致全球通货膨胀率降低。然而,仍然存在很大的下行风险,包括许多地区的政治不确定性和持续服务的提升。美国经济表现出了韧性,GDP在2024年增长了2.8%,这是由于消费者支出,出口,投资和联邦政府支出的增加所致1。相比之下,欧洲经济体的增长仍然柔和。与去年同期2相比,英国的GDP在第三季度增长了1.0%。2024年的GDP增长率在欧元区为0.7%,欧盟3为0.8%。新兴亚洲在2024年的增长受到对半导体和电子产品的强烈需求,这是由于对人工智能的大量投资所推动的。然而,该地区的两个最大经济体显而易见持续的放缓。
抽象的碳化硅(SIC)的目标是由于其出色的热性能,是功率微电子的第一材料。SIC技术的最新进展最终使Crystalline SIC纳米结构的制造。然而,纳米级SIC的热性能仍然忽略了。在这里,我们系统地研究了SIC纳米结构的热传导,包括纳米膜,纳米线和语音晶体。我们的测量结果表明,纳米结构的热导率比批量低几倍,并且值与结构的最狭小维度成比例。在最小的纳米结构中,导热率达到了批量的10%。为了更好地了解SIC中的纳米级热传输,我们还探测了声子在纳米结构中的平均自由路径和连贯的热传导。我们的理论模型将观察到的热传导的抑制与表面声子散射联系起来,这限制了声子的含义自由路径,从而降低了导热率。这项工作揭示了SIC纳米结构的热特性并解释了它们的起源,从而实现了SIC微电子的逼真的热工程。
材料上的特性。15最近,多层材料在表面工程社区中引起了广泛的关注,复合电极的制造也广泛用于LM电极处理。这还涉及增强电极材料的表面和界面,例如,减少金属颗粒的大小,不合适的多孔或分层结构,并与各种纳米颗粒进行修改或功能化表面(例如,,金属,金属氧化物,碳材料和离子/电子导电聚合物)。16 - 19虽然一项重要的研究集中在界面模式cation在改善金属化lms的能量存储和电性能中的作用,但它在自我修复特性方面已被很大程度上忽略了。由于其出色的电绝缘层和高导热率,可以将金属氧化物连接到聚丙烯LMS的表面上,以通过蒸气沉积形成复合的绝缘培养基。该方法不仅在适度地增加了复合lms的相对介电常数,而且在显着增强了电容器核心的热有效性方面。20,21尽管热量的快速耗散是由于电容器的介电损失或自我修复而产生的,但据信复合LMS可以防止在自我控制点附近介电lm的层间粘附,从而在自我控制过程中发挥隔离功能。22,23
第一部分。准备RHEL安装以准备RHEL安装环境的基本步骤,以满足系统的要求,支持的体系结构,并为安装媒体提供自定义选项。此外,它涵盖了用于创建可引导安装媒体,设置基于网络的存储库以及配置UEFI HTTP或PXE安装源的方法。指南。
dee(以前称为Ceesat)于1995年在英国 - 印度娱乐项目下成立。mtech。(能源工程),自1996年以来提供了一个跨学科的全日制课程。DEE的R&D活动包括使用太阳能 / Phyco解析,能量建模,能源有效的建筑物和储能设备的二氧化碳捕获和隔离,废水处理。该部门还为其他学术机构和行业提供了有关固体和液体测试,校准和能源审核的咨询服务。DEE的测试实验室已通过ISO 9001:2008认证。
在高电流操作条件下发展高性能的氧气进化反应(OER)电催化剂对于碱性水电解的未来商业应用至关重要。在此,我们准备了一个三维(3D)双金属氧氧化物杂交杂种,该杂交杂种在Ni泡沫(NifeOOOH/NF)上生长,该杂种是通过将Ni Foam(NF)浸入Fe(NO 3)3溶液中制备的。在这种独特的3D结构中,NifeOOH/NF杂种由Crystalline Ni(OH)2和NF表面上的无定形FeOOH组成。作为双金属氧氧化电催化剂,NifeOOOH/NF混合动力表现出极好的催化活性,不仅超过了其他报道的基于NI -FE的电催化剂,而且超过了商业IR/C催化剂。原位电化学拉曼光谱学证明了参与OER过程的活性FeOOH和NiOOH相。从Fe和Ni催化位点的协同作用中,NifeOOOH/NF混合动力在80 C的10.0 mol l 1 KOH电解质下在具有挑战性的工业条件下提供了出色的OER性能,需要在1.47和1.51 V中的潜力,以达到1.47和1.51 V,以达到1.47和1.51 V,以达到超高的催化电流的100和500 mA。2021作者。由Elsevier Ltd代表中国工程学院和高等教育出版社有限公司出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要:由于其特征,包括10-15 pc/n的D 33和高稳定性,直至1000℃以上的温度,因此,含有壁炉晶体的极性玻璃 - 螺旋孔被认为是在高温下需要压电的应用的高效材料。在本文中,我们研究了Sr-Fresnoite(STS)玻璃训练的钡取代。研究了两个方面:首先,取代对结晶的优先方向的影响,其次,玻璃 - 凝聚力在高温下产生和传播表面声波(SAW)的能力。XRD分析表明,BA的替换为10 at。替代,使我们能够保持壁画晶体(00L)平面的强烈优先取向,低于表面以下1 mm以上。较高的替代水平(25和50 at。%)诱导与表面机制竞争的非方向的体积结晶机制。锯设备是用0、10和25 at。%ba取代的玻璃室底物制造的。温度测试揭示了所有这些设备的频率和延迟的高稳定性。玻璃 - 驾驶次数为10%Ba取代的玻璃训练性给出了锯信号的最强振幅。这归因于高(00L)优先方向以及缺失的体积结晶。
(wt。%)[Guéguen2011] [9] tife 0.90 2.981(9)94.8 2.1 [Challet2005] [10] tife 0.85 Mn 0.05 Mn 0.05 2.985 97 Cu0 tife 0.88 MN 0.88 MN 0.02 2.985(8) 95.0.0±0.5 2.6±0.5 2.3±0.5.3±0.5 c2 tife 0.86 mn 0.88(2)94.9±0.5 1.5 1.5±0.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 C4 tife 0.84 Mn 0.84 Mn 0.0.0.0.02 0.9991(6) 86.5±0.7 11.0±0.5 2.5±0.5 <5