周围生物膜是海洋和淡水底栖动物中许多草食无脊椎动物的主要资源。它们对于沿海地区的底栖食品网,底物稳定性和生物地球化学过程至关重要。虽然已经使用了在人工底物上生长的纳特菌,混合的藻类群落对生物膜上的无脊椎动物放牧的重要性进行了广泛的研究,但到目前为止,尚无对这些放牧研究创建定义的周围围膜群落的方法。的原因是,许多底栖藻类与形成生物膜非生物抗物部分的细胞外聚合物(EPS)中发生的共同物种相互作用。在这里,我们提出了一种新颖的方法,该方法允许通过使用藻酸盐聚合物作为人工EPS结构来制造定义的单栽培和多种生物膜,可以嵌入藻类培养物。使用共聚焦激光扫描显微镜,我们表明藻酸盐将各种藻类分类嵌入与天然生物膜非常相似的EPS基质中。在放牧的实验中,我们证明了几种常见的淡水食草无脊椎动物可以有效地放牧这些藻酸盐生物膜。As the method is easy to handle, it allows for highly controlled feeding experiments with benthic herbivores to assess, for example, the role of algal biodiver- sity on the ef fi ciency of top-down control, the effects of environmental drivers such as nutrients, salinity, or sea- water acidi fi cation on bio fi lm community structure, and the impacts of herbivory in benthic communities.
摘要。根据其功能范围,模块化软件设计,并行化策略以及实时操作和实验系统中的当前用途来描述模块化和集成的数据同化系统(MIDAS)软件(版本3.9.1)。MIDAS是在加拿大环境和气候变化上开发的,用于运营和研究应用,包括加拿大运营数值天气预测系统的所有大气数据同化(DA)元素。MIDAS的描述范围是加拿大预测系统的一部分,该系统于2024年6月投入运营。该软件被签署为有足够的一般通用,以启用其他DA应用程序,包括大气成分(例如臭氧),海冰和海面温度。除了描述当前的MIDAS应用外,还提供了来自这些系统的结果的样本,以证明其性能与从切换到使用MIDAS软件或其他数字天气预测(NWP)中心的任何一个系统相比。The modular software design also allows the code that implements high-level com- ponents (e.g.observation operators, error covariance matri- ces, state vectors) to easily be used in many different ways depending on the application, such as for both variational and ensemble DA algorithms, for estimating the observation impact on short-term forecasts, and for performing various observation pre-processing procedures.将单个常见的DA软件包用于地球系统的多个组成部分,提供了实用和科学的材料,包括促进未来对DA ap aperaches的研究,这些研究明确包括耦合的连接,包括 -
虽然对NATURE量子机械的模拟进行模拟的第一个建议可以追溯到Richard Feynman 1,但最近尝试将量子化理论应用于高能物理系统研究的最新尝试已被证明是特别成功的。As a paradigmatic example quantum state tomography, a procedure that allows full re- construction of the density matrix of a system by perform- ing a complementary series of measurements on an ensem- ble of identical copies of the system under scrutiny 2 , is ide- ally applicable to colliders, where large numbers of events are generated 3–6 , and has been applied to numerical simulation studies of various high energy particle physics systems 4–7 。量子算法,包括量子机学习技术,是为了识别Standard模型和数据8-10中的签名,以及对撞机事件的更计算经济模拟11。这些结果验证了粒子物理和量子信息的两个领域之间的预期一致性(标准模型基于量子场理论,这是量子理论),但可以进一步利用这种联系背后的数学细节,从而导致对这两个领域的新见解。在本文中,我们确定了choi-jamiolkowski同构12或状态通道二重性,是一种理论原理,使量子信息理论在计算标准模型散射振幅的计算中系统地应用,并认为值得以下原因引起粒子物理社区的注意。
•积极警报顺序 - 允许在激活面板输出之前进行火灾调查(请参见上文)•循环当前检查 - 允许用户查看电流绘制的电流•向前和反向循环扫描 - 扫描 - 易于开放或短路故障的位置或短路的位置,可以轻松进行循环•循环完整性•允许loop times for pan for taurops panifiate paniution paniution temeriation decution•自动读取•自动读取•自动级别 - 要测试的指示•设备测试 - 允许从面板位置进行电子测试的单个设备•输出组测试 - 允许验证输出编程•警报仿真测试 - 组合设备和输出组测试选项,以检查正确的警报功能•设备故障代码•允许易于
n this issue's cover story, we will focus on smart energy in light of Shanghai Electric's industrial characteristics. Smart energy is not only a concept but also an industry, which is a combination of energy, Internet and technology, and a practical overall solution for water, electricity, gas, heat, oil and other integrated energy. For example, in the wind power field, to achieve unattended remote monitoring, through the remote intelligent control, balanced delivery and precise regulation can be achieved in the centralized control center. Additionally, it allows for timely detection and repair of wind turbine losses to ensure the safe operation and maintenance of wind farms. Smart energy is an efficient, interactive, and integrated energy system, serving as the top-level framework that integrates with all kinds of energy management system. It adopts professional intelligent technology and means to achieve high efficiency, energy saving and cleanliness. In the era of Internet of Everything, more and more traditional industries need to use data to connect. Built on the data base, the digital economy becomes the "engine" to drive economic growth and industrial transformation and upgrading. Actively embracing the Internet and effectively integrating the "Internet +" technology with energy development will undoubtedly yield many benefits. In the future, Shanghai Electric's "Internet +" smart energy system will fully reflect the user demand, efficiently aligning supply with demand to quickly solve the user's pain points. It is conducive to making scientific decisions for enterprises. With efficient and convenient energy scheduling and management, it promotes the optimization of the energy structure and the efficient use of energy, and reduces energy consumption. In addition, it brings more space for the innovation of industrial and business models. It is not difficult to imagine that "Internet +" smart energy will bring a change to the energy industry.
摘要。Brown carbon (BrC) is an absorbing organic aerosol (OA), primarily emitted through biomass burn- ing (BB), which exhibits light absorption unique to both black carbon (BC) and other organic aerosols.Despite many field and laboratory studies seeking to constrain BrC properties, the radiative forcing (RF) of BrC is still highly uncertain.To better understand its climate impact, we introduced BrC to the One-Moment Aerosol (OMA) module of the GISS ModelE Earth system model (ESM).We assessed ModelE sensitivity to primary BrC processed through a novel chemical aging scheme and to secondary BrC formed from biogenic volatile organic compounds (BVOCs).初始结果表明,BRC通常贡献0.04 Wm-2的辐射效应最高的辐射效应。Sensitivity tests indicate that explicitly simulating BrC (separating it from other OAs), including secondary BrC, and simulating chemical bleaching of BrC contribute distinguishable radiative effects and should be accounted for in BrC schemes.This addition of prognostic BrC to ModelE allows greater physical and chemical complexity in OA representation with no apparent trade-off in model performance, as the evaluation of ModelE aerosol optical depth against Aerosol Robotic Network (AERONET) and Moderate Res- olution Imaging Spectroradiometer (MODIS) retrieval data, with and without the BrC scheme, reveals similar skill in both cases.Thus, BrC should be explicitly simulated to allow more physically based chemical compo- sition, which is crucial for more detailed OA studies like comparisons to in situ measurement campaigns.我们在本文结尾的Modele内包含了BRC代表的最佳实践摘要。
关键词:化学合成,氧化铜(CUO),氧化锰(Mn 2 O 3)和Mn 2 O 3 /cuonanomamatials,超级电容器,环状伏安仪。1。Introduction: Mn 2 O 3 (manganese oxide) is helpful for supercapacitor applications due to its high specific capacitance, good electrical conductivity, and excellent electrochemical stability[1].Mn 2 O 3 is a non-toxic and environmentally benign material, making it suitable for sustainable energy storage applications[2].Mn 2 O 3 has a high specific capacitance, typically 200-400 F/g, which allows for high energy超级电容器中的存储密度[1,3] .mn 2 O 3具有相当好的电导率,可实现快速充电/放电速率和超级电容器的高功率密度。mn 2 O 3具有出色的电化学稳定性,可以长期循环寿命和超级电容器应用中的可靠性能[4] .cuo(氧化铜)可以表现出高达1000 f/g的特定电容,从而实现高能量密度。CuO的电导率比某些金属氧化物具有更好的电导率,从而改善了功率传递。它会经历可逆的还原氧化,导致高电容[5,6] .Combining Mn 2 O 3's和CuO的高电容(分别高达400 f/g和1000 f/g,分别为400 f/g和1000 f/g)会在MN 2 O 3/CUO组合中带来较低的整体电容性能[7]。 MN2O3,提高功率传递。两种金属氧化物的可逆氧化还原反应有助于高能量存储能力[8,9]。与单个氧化物相比,复合结构可以改善电化学稳定性。这些优点使用含有的土壤和低成本材料(如Mn和Cu)使这些复合材料在商业上可行[10]。
C-130XJ 保留了其前代机型的坚固机身,但性能和能力得到了极大改进。新的推进系统提供了更大的航程、更低的油耗和更好的起飞性能。发动机采用电子控制,在海平面温度高达 104°F 时提供最大功率,从而大大提高了在高海拔和高温下的性能。缩短的起飞距离使 C-130XJ 能够在较短的跑道上飞行;更快的爬升速度使其能够更快地达到更安全的高度以避开敌对威胁;更高的巡航上限使其能够在更省油的航线上飞行;更快的巡航速度和更低的油耗使每架飞机每天可以出动更多架次。