n型Mg 3 SB 2-x Bi X合金近年来已经进行了广泛的研究,因为它们的功绩(ZT)显着增强,因此将其作为废热恢复和冷却应用的潜在候选者。在这篇综述中,总结了与Mg 3 SB 2合金Mg 3 Bi 2产生的效果,包括狭窄的带隙,有效的质量减少和载流子迁移率增加。随后,揭示了N型Mg 3 SB 2-X BI X中缺陷控制的电性能。一方面,对内在缺陷和外部缺陷的操纵可以达到最佳载体浓度。另一方面,MG空缺主导载体散发机理(电离杂质散射和晶界散射)。讨论了Mg 3 SB 2-x BI X热电材料的两个方面。最后,我们回顾了发电和冷却应用中这些材料的当前状态和未来前景。
摘要:形状记忆合金(SMA)是一种具有独特性能的先进材料,例如形状记忆效应和超弹性,这使得它们在空间应用方面非常有价值。本文探讨了它们在执行器、传感器结构、振动控制、热管理和故障检测系统中的应用。 SMA 可提高可变形机翼和可重构航天器等应用的燃油效率、适应性和性能。尽管存在疲劳和成本等挑战,但最近的进展正在克服这些限制。这篇评论重点介绍了 SMA 在下一代航空航天系统中的当前作用和未来潜力。
各位同仁,挤压加工是目前金属及合金塑性成形的常用方法。近年来,除了改进直接/间接挤压加工方法外,新的技术也不断被提出。金属及合金挤压的成形机理,包括材料最终性能的控制与表征以及挤压加工过程中被激活的成形机理的分析,是本期特刊的研究范围。基础研究与技术创新推动挤压技术的融合,发现现有的不足,尝试突破,不断将新的研究课题和发展路径推向前沿尤为重要。本期特刊欢迎关注新型挤压技术及其对材料最终力学性能和成形性的影响的文章,包括钢材和有色合金(镁/铝/钛合金等)。
尽管这些元素在先进微电子技术中发挥着关键作用,但对 2020 年 3 月 15 日 RFI“半导体制造和先进封装供应链中的风险”(案卷号 210310-0052)和 2021 年 9 月 24 日 RFI“半导体供应链中的风险”(案卷号 210915-0189)的回复均未提及这些材料。对前一份 RFI 的回复中提到了高介电常数(“高 k”)材料,但只是顺便提及。同样,美国能源部 2022 年 2 月 24 日根据第 14017 号行政命令发布的报告“半导体:供应链深度评估”也没有提及这些材料。美国地质调查局于 2022 年 2 月 24 日发布的“关键矿产最终清单”(档案编号 DOI-2021-0013)重申了其 2018 年的决定,即这些材料“对国家安全和经济繁荣至关重要”。
威斯康星大学 - 米尔沃基大学Pradeep K. Rohatgi博士教授Anton Ficai教授Anton Ficai教授,Bucharest Politehnica大学教授Jufu Jiang博士,Harbin Technology Assoc。 中国达利安大学的Xiaojun Yan博士。 日本Kindai大学Masaaki Nakai博士教授。 印度科学学院班加罗尔协会的Ajay Kumar教授。 穆罕默德·阿卜杜勒·哈迪·格佩雷(Mohamed Abdel-Hady Gepreel) Fevzi Bedir,Gebze技术大学教授HayrettinAhlatçı博士,Karabuk大学教授AliGüngör博士,Karabuk大学教授Burhanettinİnem博士,Gazi University威斯康星大学 - 米尔沃基大学Pradeep K. Rohatgi博士教授Anton Ficai教授Anton Ficai教授,Bucharest Politehnica大学教授Jufu Jiang博士,Harbin Technology Assoc。中国达利安大学的Xiaojun Yan博士。 日本Kindai大学Masaaki Nakai博士教授。 印度科学学院班加罗尔协会的Ajay Kumar教授。 穆罕默德·阿卜杜勒·哈迪·格佩雷(Mohamed Abdel-Hady Gepreel) Fevzi Bedir,Gebze技术大学教授HayrettinAhlatçı博士,Karabuk大学教授AliGüngör博士,Karabuk大学教授Burhanettinİnem博士,Gazi University中国达利安大学的Xiaojun Yan博士。日本Kindai大学Masaaki Nakai博士教授。 印度科学学院班加罗尔协会的Ajay Kumar教授。 穆罕默德·阿卜杜勒·哈迪·格佩雷(Mohamed Abdel-Hady Gepreel) Fevzi Bedir,Gebze技术大学教授HayrettinAhlatçı博士,Karabuk大学教授AliGüngör博士,Karabuk大学教授Burhanettinİnem博士,Gazi University日本Kindai大学Masaaki Nakai博士教授。印度科学学院班加罗尔协会的Ajay Kumar教授。 穆罕默德·阿卜杜勒·哈迪·格佩雷(Mohamed Abdel-Hady Gepreel) Fevzi Bedir,Gebze技术大学教授HayrettinAhlatçı博士,Karabuk大学教授AliGüngör博士,Karabuk大学教授Burhanettinİnem博士,Gazi University印度科学学院班加罗尔协会的Ajay Kumar教授。穆罕默德·阿卜杜勒·哈迪·格佩雷(Mohamed Abdel-Hady Gepreel) Fevzi Bedir,Gebze技术大学教授HayrettinAhlatçı博士,Karabuk大学教授AliGüngör博士,Karabuk大学教授Burhanettinİnem博士,Gazi University穆罕默德·阿卜杜勒·哈迪·格佩雷(Mohamed Abdel-Hady Gepreel) Fevzi Bedir,Gebze技术大学教授HayrettinAhlatçı博士,Karabuk大学教授AliGüngör博士,Karabuk大学教授Burhanettinİnem博士,Gazi University
包含分析对于确定铝和其他金属的韧性和加工特性至关重要。Zeiss SmartPi软件允许对铝制包含物进行快速易于识别,表征和分类。使用具有一流的Zeiss SEM的能量分散性X射线光谱(EDS)附件,将自动扫描,成像和分析每个包含。叠加化学信息对您的SEM图像,并将其呈现在粒子库中,以直观地理解特征类别和类型,并符合您的精确要求和规范。
摘要 目前先进材料研究领域的技术更新倾向于关注生物医学材料的应用以及镁及其合金的利用。镁 (Mg) 作为可生物降解骨科植入物的替代材料已被广泛研究。最近关于 Mg 的潜在应用的研究涉及其机械性能、生物降解特性以及体外和体内测试。本研究旨在回顾 Mg 的性能、生产工艺、生物材料路线图以及 Mg 合金化学成分在骨科应用中的关注点。同时还强调了镁合金性能未来潜在的改进。 关键词:镁合金;可生物降解;骨科植入物;生物材料路线图 1. 简介。
完整作者列表: Oliver, Sean;乔治梅森大学,物理和天文系;乔治梅森大学,量子材料中心 Fox, Joshua;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Hashemi, Arsalan;阿尔托大学,应用物理系 Singh, Akshay;麻省理工学院,材料科学与工程系;印度科学研究所,物理系 Cavalero, Randal;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Yee, Sam;乔治梅森大学,物理和天文系;乔治梅森大学,量子材料中心 Snyder, David;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Jaramillo, Rafael;麻省理工学院,材料科学与工程系 Komsa, Hannu-Pekka;Aalto-yliopisto,应用物理系;奥卢大学,微电子研究部 Vora, Patrick;乔治梅森大学,物理与天文系;乔治梅森大学,量子材料中心