摘要:镁合金因其重量轻、强度高和优异的机械性能而闻名,在许多应用中备受青睐。镁合金增材制造(Mg AM)的出现进一步提升了它们的普及度,具有无与伦比的精度、快速的生产速度、增强的设计自由度和优化的材料利用率等优势。该技术在制造复杂的几何形状、复杂的内部结构和性能定制的微结构方面具有巨大潜力,可实现突破性的应用。在本文中,我们深入研究了当前 Mg AM 采用的技术的核心工艺和关键影响因素,包括选择性激光熔化(SLM)、电子束熔化(EBM)、电弧增材制造(WAAM)、粘合剂喷射(BJ)、摩擦搅拌增材制造(FSAM)和间接增材制造(I-AM)。激光粉末床熔合(LPBF)精度高,但受到低沉积速率和腔室尺寸的限制;WAAM 为大型部件提供了成本效益、高效率和可扩展性; BJ 可实现定制部件的精确材料沉积,且具有环境效益;FSAM 可实现细晶粒尺寸、低缺陷率和精密产品的潜力;I-AM 具有较高的构建速度和工业适应性,但最近研究较少。本文试图探索 AM 未来研究的可能性和挑战。其中两个问题是如何混合不同的 AM 应用程序以及如何将互联网技术、机器学习和过程建模与 AM 集成,这是 AM 的创新突破。
铝和铝合金在各种顶级工业领域有着广泛的应用。从航空航天工业发展开始(自19世纪以来),铝合金因其重量轻、机械强度高、耐腐蚀性好等特点,开始用于制造飞行器部件(例如飞艇)。自20世纪初以来,铝也被用于制造飞机部件,例如:发动机壳体、气缸体和航空发动机的其他部件[1-3]。在同一时期,铝合金首次进行了热处理,这在当时是一项了不起的技术进步,后来导致铝在航空航天工程中的大量使用,铝合金成为这些顶级工业中使用最广泛的材料。铝合金按主要合金元素分类,包括 8 个系列的合金,如表所示。1,其中提到它们是否可热处理,以及机械强度 [4]。1xxx、3xxx 和 5xxx 系列的合金不可热处理。2xxx、6xxx 和 7xxx 系列的合金可热处理。4xxx 系列铝合金
制造工艺:用于亚铁和非亚铁金属材料的铸造技术(重力,高压和低压模具铸造等。),转化为固体和半固态状态(冲压,锻造),热处理,过程发展,降低缺陷等。
NETL 的合金开发能力以 NETL 合金锭冶金术(熔炼)和热机械加工(锻造和轧制)为基础,这两项技术的规模在 DOE 综合设施和国内行业中独一无二。这项独特的能力使研究人员能够高效且经济地制作合金概念原型,并将其规模轻松转化为工业实践(介于实验室和生产规模之间)。这种制造能力,加上 NETL 在实际条件下进行计算材料设计和性能评估的能力,使 NETL 能够提供合金解决方案,从而实现先进的能源系统并支持美国工业部署新兴技术。NETL 的许多姊妹国家实验室(太平洋西北国家实验室、爱达荷国家实验室、洛斯阿拉莫斯国家实验室和橡树岭国家实验室)以及美国大大小小的企业都利用 NETL 的合金制造能力来制作先进合金概念的原型。
关于日本结构钛 (Ti) 合金的研究和开发趋势,本文回顾了过去和现在的情况,并提出了我们对未来战略的想法。作为变形加工和微观结构控制的基本研究政策,有必要通过数据科学方法促进研究和开发的“回顾”,以确定不依赖于经验规则的最佳工艺条件和微观结构形成。此外,合金/微观结构/机械性能的优化设计作为一种“改变游戏规则的方法”,例如专注于非平衡相(马氏体、欧米茄相)或尚未开发用于结构部件应用的 Ti 合金中的杂质添加,被列为创新研究方向。与钢相比,钛的历史非常短,因此它仍然具有巨大的潜力。