Yaping Wang, 1,2 Yufan Wang, 2 Haiyan Wang, 2 Liang Ma, 2 Simon B. Eickhoff, 5,6 Kristoffer Hougaard Madsen, 1,7,8 Congying Chu, 2, * and Lingzhong Fan 1,2,3,4,9, * 1 Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100190, China 2 Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China 3 CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China 4 School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China 5 Institute of Neuroscience and Medicine (INM-7: Brain and行为。研究,哥本哈根大学医院-Amager和Hvidovre,2650 Hvidovre,丹麦9铅联系 *通信:chucongying@gmail.com(C.C.),lingzhong.fan@ia.ac.cn(l.f.)https://doi.org/10.1016/j.celrep.2024.113770
背景:追踪海洋鸟类和蝙蝠的活动仍然是了解太平洋 OCS 海上能源开发对野生动物的潜在影响的关键挑战。众所周知,蝙蝠和鸟类在迁徙期间会飞到海上,历史上经常有蝙蝠飞到离岸 20 多英里的记录。包括红瓣蹼鹬、红颈瓣蹼鹬和红腹滨鹬在内的滨鸟也在春季和秋季迁徙到海上,但缺乏有关迁徙时间和地点的信息。海洋鸟类也会随季节重新分布,人们对繁殖后的扩散和重要的种群特定越冬地点知之甚少。更多有关运动生态学的信息将有利于全面评估海上能源项目的影响。
摘要,安哥拉和纳米比亚附近的沿海地区以其东南大西洋的高产海洋生态系统而闻名。最近几十年,这些地区发生了重大的长期变化。在这项研究中,我们研究了整个年度周期中这些长期变化的可变性,并使用34年(1982- 2015年)的区域海洋模型模拟探索了基本机制。结果揭示了安哥拉和纳米比亚海岸沿海面温度(SST)趋势的明显季节性依赖性,其正面和负趋势交替。安哥拉沿海地区的长期变暖趋势主要是由澳大利亚春季和夏季(11月至1月)的明显变暖趋势解释,而纳米比亚的十年趋势是由于对澳大利亚冬季冷却趋势的平衡和澳大利亚的夏季变暖而产生的。对混合层温度变化的热预算分析表明,这些变化是通过沿海电流的长期调节来解释的。安哥拉变暖趋势主要是通过对极向沿海电流的强化来解释的,该电流将更多温暖的赤道水向安哥拉沿岸运送出来。在纳米比亚之外,变暖趋势归因于西北班格拉电流的减少,该电流从南部到纳米比亚海岸的凉爽水。沿海电流中的这些变化与沿赤道波导沿遥远的季节性沿海被困波的调节有关。这些长期变化可能对当地生态系统和渔业具有重大影响。
收入不平等变化是否影响二氧化碳排放的问题仍然是理论和经验水平上的辩论话题。本文的目的是研究收入分配的全部幽灵变化对基于消费的二氧化碳排放的影响。为此,我们估计了一个动态差异GMM模型和动态阈值回归模型,该模型允许在1990年至2019年之间覆盖107个国家的面板数据库上进行内生性。我们的分析强调了不同的收入类别对基于消费的CO2排放的贡献大不相同。此外,通过考虑每个收入群体平均收入中的国家间不平等现象,我们发现对碳排放的影响非线性。更具体地说,最高10%的收入份额对基于人均消费的碳排放的影响根据其平均收入水平而有所不同:下降收入水平为负,并且随着收入的上升而变得积极。中产阶级的贡献在所有收入水平上为负,而最贫穷的细分市场的二氧化碳贡献可以忽略不计。
1临床医学研究所,I.M.Sechenov第一莫斯科州立医科大学(Sechenov大学),俄罗斯莫斯科11991; zolnikova_o_yu@staff.sechenov.ru(O.Z. ); dzhakhaya_n_l@staff.sechenov.ru(n.d。); bueverova_e_l@staff.sechenov.ru(E.B. ); sedova_a_v@staff.sechenov.ru(A.S。); kurbatova_a_a@staff.sechenov.ru(a.k. ); chekulaev_p_a@student.sechenov.ru(p.c.) 2公共卫生研究所,I.M. Sechenov第一莫斯科州立医科大学(Sechenov大学),俄罗斯莫斯科11991; Kryuchkova_k_yu@staff.sechenov.ru 3生物医学化学研究所,生物群体,俄罗斯莫斯科109028; t.butkova@gmail.com(T.B. ); izotov.alexander.ibmc@gmail.com(a.i. ); likulikova@mail.ru(L.K.) 4生物学数学问题RAS的数学问题 - 俄罗斯科学学院应用数学研究所的分支,142290,俄罗斯Pushchino,俄罗斯5个州研究中心 - 俄罗斯123098 Moscow,Burnasyan Federalan联邦联邦医学生物物理学中心,俄罗斯123098,俄罗斯; ks_yurku@mail.ru *通信:zaborova_v_a@staff.sechenov.ruSechenov第一莫斯科州立医科大学(Sechenov大学),俄罗斯莫斯科11991; zolnikova_o_yu@staff.sechenov.ru(O.Z.); dzhakhaya_n_l@staff.sechenov.ru(n.d。); bueverova_e_l@staff.sechenov.ru(E.B.); sedova_a_v@staff.sechenov.ru(A.S。); kurbatova_a_a@staff.sechenov.ru(a.k.); chekulaev_p_a@student.sechenov.ru(p.c.)2公共卫生研究所,I.M. Sechenov第一莫斯科州立医科大学(Sechenov大学),俄罗斯莫斯科11991; Kryuchkova_k_yu@staff.sechenov.ru 3生物医学化学研究所,生物群体,俄罗斯莫斯科109028; t.butkova@gmail.com(T.B. ); izotov.alexander.ibmc@gmail.com(a.i. ); likulikova@mail.ru(L.K.) 4生物学数学问题RAS的数学问题 - 俄罗斯科学学院应用数学研究所的分支,142290,俄罗斯Pushchino,俄罗斯5个州研究中心 - 俄罗斯123098 Moscow,Burnasyan Federalan联邦联邦医学生物物理学中心,俄罗斯123098,俄罗斯; ks_yurku@mail.ru *通信:zaborova_v_a@staff.sechenov.ru2公共卫生研究所,I.M.Sechenov第一莫斯科州立医科大学(Sechenov大学),俄罗斯莫斯科11991; Kryuchkova_k_yu@staff.sechenov.ru 3生物医学化学研究所,生物群体,俄罗斯莫斯科109028; t.butkova@gmail.com(T.B. ); izotov.alexander.ibmc@gmail.com(a.i. ); likulikova@mail.ru(L.K.) 4生物学数学问题RAS的数学问题 - 俄罗斯科学学院应用数学研究所的分支,142290,俄罗斯Pushchino,俄罗斯5个州研究中心 - 俄罗斯123098 Moscow,Burnasyan Federalan联邦联邦医学生物物理学中心,俄罗斯123098,俄罗斯; ks_yurku@mail.ru *通信:zaborova_v_a@staff.sechenov.ruSechenov第一莫斯科州立医科大学(Sechenov大学),俄罗斯莫斯科11991; Kryuchkova_k_yu@staff.sechenov.ru 3生物医学化学研究所,生物群体,俄罗斯莫斯科109028; t.butkova@gmail.com(T.B.); izotov.alexander.ibmc@gmail.com(a.i.); likulikova@mail.ru(L.K.)4生物学数学问题RAS的数学问题 - 俄罗斯科学学院应用数学研究所的分支,142290,俄罗斯Pushchino,俄罗斯5个州研究中心 - 俄罗斯123098 Moscow,Burnasyan Federalan联邦联邦医学生物物理学中心,俄罗斯123098,俄罗斯; ks_yurku@mail.ru *通信:zaborova_v_a@staff.sechenov.ru
睫状缺陷引起几种纤毛病,其中一些纤毛发作迟到,这表明cilia被积极维持。仍然,我们对维护的机制的理解很糟糕。在这里,我们显示了果蝇黑色素果ift88(DM IFT88/nompb)继续沿着完全形成的感觉纤毛移动。我们进一步识别无活跃的,果蝇听力和负性持续性行为的TRPV通道亚基,以及尚未表征的果蝇鸟叶尼犬环酶2D(DM GUCY2D/ CG34357)作为DM IFT88货物。我们还显示了DM IFT88与循环酶的细胞内部分的结合,该部分在几种退化性视网膜疾病中是进化保守和突变的,对于DM GUCY2D的纤毛定位而言是不可能的。最后,成年纤维中DM IFT88和DM GUCY2D的急性敲低导致纤毛功能的维持,障碍和刺激性刺激性的行为导致缺陷,但并未显着影响睫状超结构。我们得出的结论是,成人范围内听力的感觉睫状功能涉及DM IFT88及其至少两个信号传导跨膜货物,DM GuCy2D和无效的主动维护程序。
ABSTRACT Dunng the Bremerhaven Workshop chollnesterase measurements In dab L ~ m a n d a llrnanda muscle were evaluated as a monitoring tool to assess the effect of pollutants along a 360 km transect In the North Sea, and around a dnlling s ~ t e The baslc properties of chol~nesterases, together wlth the~r natural vanabihty related to sex and size, were lnvestlgated The results show the presence of at least 2 d~fferent enzymes, acetylcholinesterase and butyrylchol~nesterase w t h h ~ g h actlv~tles In bran, muscle and l~ver No varlatlon was observed In relation to sex or slze The act~vity of both acetylcholinesterase and butyrylcholinesterase was depressed In nearshore沿着横断面的统计负数且周围在乙酰胆碱的drte s s k s s k s s k s s s s s s s s lysem肌肉的肌肉中均无差异,这会导致我们解释酶变量,从而解释酶变量,这是由于神经毒性化合物的影响来自以elbe和weser rlvers for dermitiation for the Derman for Distriation for biotiation for biotiation for biotiation for biotiation for biotiation for biotiation biotiation biotiation biotiation biotiation biotiation biotiation。在海上
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年1月29日。 https://doi.org/10.1101/2025.01.28.635365 doi:biorxiv preprint
我们自2019年以来发现的是,美国海关和边境保护局(CBP)通过部署临时设施来提高其对西南边境(SWB)的人道处理移民的能力,从而改善了对移民潮流的反应。但是,CBP并不总是记录其针对临时设施和永久设施的计划决定。此外,CBP在签发临时设施的合同之前没有考虑替代方案。最后,CBP没有记录它是否不断重新评估对现有临时设施的需求,包括保留这些设施的成本效益。这些条件之所以发生,是因为CBP优先考虑短期响应,而不是长期计划,并且没有为临时设施和永久设施的全面政策。因此,CBP可能会花钱在不具有成本效益的设施上,并且符合纳税人的最大利益。此外,CBP可能无法为将来的移民潮流或拘留的移民稳定状态做好充分的准备。CBP响应CBP与这两个建议同意。我们认为这些建议是开放和解决的。
半胱氨酸 (Cys) 和蛋氨酸 (Met) 对陆地 S 循环至关重要,因为它们是植物营养和微生物生长所需的碳 (C)、氮 (N) 和硫 (S) 来源。然而,土壤微生物预计会争夺这些 S-氨基酸中的 C、N 和 S。我们假设,由于植物的 C 输入较低,植物生产力低的土壤中的微生物竞争会更激烈。在这里,我们将 14 C 标记的 Cys 和 Met 添加到从海拔驱动的原始草地生产力梯度收集的 5 种土壤中,然后我们用离心排水程序在 60 分钟内测量微生物吸收,然后用 NaOH 捕集器在 48 小时内测量随后的矿化。我们的结果表明,Cys 和 Met 都被土壤微生物迅速吸收,半衰期从 0.34 到 2.14 分钟不等,比通过测量 14 CO 2 释放确定的半衰期快一个数量级(或更多)。微生物从土壤溶液中去除 14 C 和随后释放 14 CO 2 之间存在相当大的延迟,这表明草原土壤中 Cys 和 Met 的降解主要通过生物过程发生。土壤微生物对 Cys 和 Met 的吸收主要由高亲和力运输系统 (0.01 – 0.1 mM) 控制,而亲和力较低的运输系统在较高底物浓度 (1 – 100 mM) 下变得更为重要。此外,在生产力较低、海拔较高的地区,Cys 和 Met 的微生物吸收和矿化率下降,这表明有机 N 和 S 的周转以及随后植物吸收的有效性可能受土壤肥力控制。我们得出结论,尽管 Cys 和 Met 可能代表土壤中 DON 和 DOS 库的小部分,但由于它们在草原土壤中的快速周转和补充率,它们对土壤微生物和植物营养的重要性可能被低估了。
