摘要:船上的高级地静力辐射成像仪(AGRI)卫星4A(FY-4A)卫星提供可见的辐射,其中包含有关云和降水量的关键信息。在这项研究中,使用局部粒子细胞(PF),通过观察系统模拟实验(OSSE)评估了同化Fy-4a /agri全套可见辐射对对流系统模拟的影响。将局部PF与天气研究和预测模型(WRF)模型相结合的数据同化研究床(DART)实施。为期2天的数据AS-SIMILATION(DA)实验的结果在天气量表上产生了令人鼓舞的结果。与局部PF相关的FY-4A /Agri可见的辐射显着改善了云水路路径(CWP),云覆盖率,降雨速率和降雨面积的分析和预测。此外,在多云地区附近的温度和水蒸气混合比产生了一些积极影响。敏感性研究表明,最佳结果是通过与模型网格间距(20 km)和足够短的循环间隔(30分钟)相当的定位距离来实现的。但是,由于可见的辐射中缺乏相关信息,局部PF无法改善云垂直结构和云相。此外,将局部PF与集成调节器(EAKF)进行了比较,并且表明即使在后者的集合成员的数量增加一倍的情况下,局部PF的表现也超过了EAKF,这表明局部PF的巨大潜力在吸收了可见的可见光范围内。
摘要:为了提高对影响每月海面温度(SST)变异性的海洋过程的理解,我们分析了社区地球系统模型,第2版,层次结构,其中模型仅在其海洋复杂性程度上有所不同。最现实的海洋是动态海洋模型,作为完全耦合模型(FCM)的一部分。从机械脱钩的模型(MDM)中的下一个最现实的海洋就像FCM一样,但排除了异常的风应力 - 驱动的海洋变异性。最简单的海洋是平板海洋模型(SOM)。将浮力耦合的动态海洋纳入MDM,其中包括SOM中缺乏温度对流和垂直混合,导致到处的SST变量减弱,并且与SOM相比,高纬度和赤道PACIDICE中SST异常的持久性降低。与MDM相比,大多数区域中FCM中的异常风应力 - 驱动的海洋动力学会导致更高的SST方差和更长的持续时间尺度。动态海洋的净作用,作为整体阻尼剂或异常SST方差和持久性的扩增,在区域取决于区域。值得注意的是,我们发现与FCM相比,SST变异性的热力学强迫幅度的大小相比,SOM和MDM配置中海洋模型的复杂性的努力导致了变化。这些变化部分源于海洋变化的混合层深度的差异,并在尝试量化某些海洋机制对模型之间SST变异性差异的相对贡献时应考虑。
a 橡树岭国家实验室计算科学与工程部,田纳西州橡树岭 b 俄克拉荷马大学微生物与植物生物学系,俄克拉荷马州诺曼 c 劳伦斯伯克利国家实验室气候与生态系统科学部气候科学系,加利福尼亚州伯克利 d 兰德公司工程与应用科学部,弗吉尼亚州阿灵顿 e 印第安纳大学布卢明顿分校奥尼尔公共与环境事务学院,印第安纳州布卢明顿 f 加州理工学院喷气推进实验室,加利福尼亚州帕萨迪纳 g 加州理工学院地质与行星科学部,加利福尼亚州帕萨迪纳 h 海洋生物实验室,生态系统中心,马萨诸塞州伍兹霍尔 i 美国农业部农业研究局水文与遥感实验室,马里兰州贝尔茨维尔 j 劳伦斯伯克利国家实验室地球与环境科学区,加利福尼亚州伯克利 k 劳伦斯伯克利国家实验室联合生物能源研究所,加利福尼亚州伯克利 l 桑迪亚国家实验室生物科学部,加利福尼亚州利弗莫尔 m伊利诺伊大学芝加哥分校环境科学和地球与环境科学系,伊利诺伊州芝加哥 n 亚利桑那大学环境科学系,亚利桑那州图森 o 印第安纳大学布卢明顿分校地理系,印第安纳州布卢明顿 p 橡树岭国家实验室环境科学部和气候变化科学研究所,田纳西州橡树岭 q 阿贡国家实验室数学和计算机科学部,伊利诺伊州莱蒙特 r 太平洋西北国家实验室大气科学和全球变化部,华盛顿州里奇兰 s 阿贡国家实验室环境科学部,伊利诺伊州莱蒙特 t 桑迪亚国家实验室热/流体科学与工程,加利福尼亚州利弗莫尔 u 加利福尼亚大学布伦环境科学与管理学院,加利福尼亚州圣巴巴拉 v 洛斯阿拉莫斯国家实验室地球与环境科学部,新墨西哥州 w 华盛顿大学大气科学系,华盛顿州西雅图
摘要:罗伯特(Robert)的增长热气泡(RRTB)是用于评估大气模型的基准案例。在此过程中,使用分析和数值方法进一步研究了RRTB,从而在更大程度上改善了文献中发现的质量描述。所使用的理论框架是浮力的热和缩放理论,它们能够一起预测气泡上升时的预期行为的一部分,因此可以用来进一步进行模拟。对于数值实验,我们使用Boussinesq近似值和更高分辨率的各种对流方案模拟了二维和三维RRTB。虽然结果与以前的作者在同一基准和建立的理论框架上提出的结果一致,但我们添加了定量度量,以验证数值模型的基本物理。我们的结果还表明,由于在2D平面中配合使用时,RRTB将成为一个非常具有挑战性的候选人,只有以定性的方式进行比较,并且在模拟3D泡泡时,形状会发生显着变化。
摘要:Eddy协方差(EC)空气 - SEA CO 2频率测量已为大型研究船开发,但尚未针对较小的平台进行证明。我们的目标是设计和构建一个完整的EC CO 2型号软件包,适合在浮标上无人看管的操作。已发表的最先进的技术对研究容器有效,例如气流干燥和液态水排斥,适用于有限的功率有限的2-M铁饼浮标。使用现成的(“股票”)气体分析仪(EC155,Campbell Scientifucifuc,Inc。)和原型气体分析仪(“ Proto”)测量快速响应atso-spheric CO 2的浓度,并使用降低的运动诱导的误差(与仪器制造商合作)。 该系统于2020年10月在缅因州的新罕布什尔大学(UNH)Air - Sea Interaction浮标进行了18天。 数据证明了系统的整体鲁棒性。 以前在基于船舶的测量结果上使用的实证后技术技术来解决CO 2分析仪的运动灵敏度,通常对库存传感器无效。 原始分析仪明显胜过库存单元,不需要临时校正,但揭示了未来设计中要解决的剩余文物。 描述了减少功率需求并增加无人值守的部署持续时间的其他系统修复。快速响应atso-spheric CO 2的浓度,并使用降低的运动诱导的误差(与仪器制造商合作)。该系统于2020年10月在缅因州的新罕布什尔大学(UNH)Air - Sea Interaction浮标进行了18天。数据证明了系统的整体鲁棒性。以前在基于船舶的测量结果上使用的实证后技术技术来解决CO 2分析仪的运动灵敏度,通常对库存传感器无效。原始分析仪明显胜过库存单元,不需要临时校正,但揭示了未来设计中要解决的剩余文物。描述了减少功率需求并增加无人值守的部署持续时间的其他系统修复。
描述了一种通过光电检查 9,440 埃单位的水蒸气吸收带来测量微小绝对湿度变化的仪器。该仪器由一个小光源组成,该光源将其辐射通过不到一米半的空气路径发送到分散系统。然后,将得到的光谱落在两个真空光电管上;一个位于 9,400 埃单位的水蒸气吸收带中心,另一个位于 8,000 埃单位,不存在水蒸气吸收带。随着空气路径中的绝对湿度发生变化,带区域中的光电管会受到影响;而参考光电管则不受影响。光电管布置在放大电路中,以放大变化湿度的影响。该仪器使用便携式微安表代替所有以前光谱湿度计的灵敏电流计。可以测量 143 厘米空气路径上 2 至 8 X 10~5 厘米可降水路径的湿度变化。对仪器的小灵敏范围进行了调查,结果表明,在目前可用的设备下,该装置仅限于在小湿度范围内使用。T