在巴西,对1型糖尿病(T1DM)年龄少于20岁的人(T1DM)的入口和普遍病例的估计分别为8,900和92,300,因此在此年龄组中最高且普遍存在的国家中排名最高的国家中排名第三(1)。尽管T1DM的诊断在儿童期和青春期更为常见,但它也可能在成年期发生(2,3)。但是,仍未估计巴西成年后T1DM发作的人的事件案例数量。T1DM由于胰腺β细胞的破坏而导致胰腺产生胰岛素的缺乏效率或缺乏胰岛素,因此具有高血糖作为临床表现。因此,治疗的主要目的是实现和维持患者的血糖控制,以防止疾病可能并发症并确保更长,更健康的预期寿命(3-6)。因此,根据全天施用多种剂量的外源胰岛素的行为,必须进行高反应成本的连续治疗,定期监测血糖,进行体育活动并消耗健康的饮食(7)。遵守健康饮食是所有其他治疗支柱正常工作的基础,但是,对于许多糖尿病患者而言,确定吃什么是治疗计划中最昂贵的任务(4)。cc涉及平衡摄入的碳水化合物的量,施用的胰岛素剂量和血糖值,并且可以通过两种方式进行。Moreover, the professional nutritionist, who has speci fi c knowledge and skills for managing diabetes, plays a fundamental role throughout the treatment, as there is no speci fi c eating pattern for this public, and it is essential that the patient himself participate in the construction of the food plan, so that it is prepared individually, considering the culture, fi nancial condition, personal preferences and comorbidities of the patient ( 4 , 5 , 7 , 8 ).除了传统的饮食处方模型外,还有其他策略有助于降低T1DM患者(例如碳水化合物计数(CC))的血糖变异性,自1993年以来,该策略因在食物选择方面提供灵活性并确保更好的生活质量而被认可(9-11)。首先是基于食物基于其营养成分进行分组的部分,部分对应于大约15克碳水化合物,从而可以在同一组中的食物之间进行调整(12-14)。第二种方法更准确,因为它涉及通过称重,家庭测量或标签上的营养信息来概括一顿饭的总碳水化合物克,从而可以根据消耗的碳水化合物的含量来施用推注胰岛素(7,12)。基于此,CC有助于对碳水化合物摄入的管理和控制,这与达到血糖控制直接相关,因为碳水化合物是大量影响血糖水平变化的大量大量,因为它在血液中完全转化为血液中的葡萄糖(11,15,16)。血糖控制涉及诸如空腹血糖,餐前和餐后血糖和糖化糖的措施
电子游戏行业日新月异,新技术不断涌现,以提升玩家体验。由于近年来技术发展迅速,在游戏中使用人工智能 (AI) 可视为许多游戏公司关注的主要领域之一。尽管与学术研究领域相比,商业电子游戏行业很少应用和使用深度学习等现代人工智能技术,但我们可以看到许多游戏开发者使用人工智能方法来克服游戏中持续存在的动态难度调整 (DDA) 和敌人寻路问题。本文重点研究如何在恐怖游戏中使用人工智能来提升玩家的紧张感,研究恐怖类型中如何创造紧张感和恐惧感、如何在游戏中跟踪和识别玩家情绪,最后提出一个假设的解决方案,该解决方案可用于跟踪玩家情绪,以便在人工智能的帮助下在恐怖游戏中创造紧张感,同时结合玩家的生理反应。本文的研究结果为解决方案系统的可行性以及生理反应在商业视频游戏中的潜在用途以及为实施和测试本文提出的解决方案系统而要做的未来工作提供了参考。
增加农作物对环境压力的韧性:ISDRA2TNPB可能有助于创建更短的稻作作物,而稻草在旋风中较不容易受到损害,这是易受旋风分离的地区的常见问题。基因组是生物体中的完整遗传信息集,它存储在称为染色体的DNA分子中。它包括将RNA和蛋白质编码的基因,其真核生物在核中包含其基因组和原核生物中的基因。
巴黎AI行动峰会(2025年)标志着印度和法国共同主持的AI治理的重要里程碑,汇集了90多个国家,以应对与AI相关的全球挑战。印度及其在数字公共基础设施(DPI)和STEM方面的专业知识,在弥合西方技术野心与全球南方需求之间的鸿沟,主张在确保AI安全的同时促进创新的平衡方法。
IN-SPACe 的主要目标是支持和监督 NGE 参与太空活动。它充当印度空间部 (DoS)/ISRO 和私营参与者之间的中介,确保合作和基础设施共享。通过降低进入门槛,IN-SPACe 帮助 NGE 开发运载火箭、卫星并提供太空服务。该机构还负责评估可行性并确保私营实体开发的任何与太空相关的活动或新基础设施的安全合规性。
在孟加拉国农业大学的BAU-GPC和遗传学和植物育种实验室进行了实验,研究了Wax Jambu(Syzygium samarangense)的形态学特征(遗传变异性,遗传变异性,角色的关联,相关性和路径系数分析,均来自Wax JAX jax JAX的辅助,遗传变异性,角色的关联和路径系数分析,BAUIA,并分析BAUIA,bauia fefc and frecor, 2012年3月,2013年。随机扩增多态DNA(RAPD)用于表征分子水平的这些饰品。尽管非常相似,但在水果颜色,形状和TSS百分比具有不同的叶片特征方面,蜡jambu的5个饰面的形态彼此不同。在路径分析,水果宽,干物质和水分百分比方面有助于最大的表型和基因型直接对水果重量的直接影响,表明其作为选择参数的重要性。分子表征,以使用随机扩增的多态性DNA(RAPD)标记来研究5个蜡jambu辅助的变异性。在筛选的4个引物中,选择了2个引物,从而产生了23个清晰明亮的片段。在所使用的两个引物之间,CCAACGTCGG显示出最高水平的多态性(83.33%)。,19(82.7%)是多态性的。NEI(1972)蜡jambu的遗传多样性的估计为0.3339,而香农的信息指数为0.4952。在Bau Jamrul 3和印度尼西亚Jamrul之间观察到最高的遗传距离(0.9861)。另一方面,在Bau Jamrul 1和Bau Jamrul 2之间发现了最低距离(0.1911),这表明辅助之间存在很大的遗传差异。目前在不同形态型和syzygium samarangense的鉴定过程中使用分子标记作为形态学描述的补充的潜力提供了足够的支持
1,2 尼日利亚河流州哈科特港河流州立大学海洋工程系 Uchenna.robinson1@ust.edu.ng 摘要:本研究重点分析在几内亚湾航行的双体船的混合能源系统,旨在提高能源效率、减少排放、促进海上运输的可持续性。拟议的混合系统集成了太阳能光伏 (PV) 板、铅酸电池和备用柴油发电机,以满足在尼日利亚哈科特港航行的一艘 12 米双体船的能源需求。该系统旨在解决传统柴油动力船舶的环境和运营挑战,通过利用可再生能源提供更清洁的替代方案。通过详细的能源生产和消耗分析,该研究表明,混合系统可以显著减少对柴油的依赖,与纯柴油系统相比,每年可减少 47.6% 的二氧化碳排放量。在太阳辐射高峰期,太阳能光伏阵列为船舶提供大部分能源,而柴油发电机则确保在太阳辐射低的时期运行可靠。尽管太阳能存在季节性变化,但该系统有效地满足了双体船的能源需求,估计每年柴油消耗量为 1510 升。这项研究强调了混合动力系统在提高船舶环保性能方面的潜力。然而,它也指出了能源存储容量的局限性,并建议进一步探索先进的电池技术和可再生能源。研究结果强调了混合动力系统在推进可持续海事实践、降低运营成本和排放方面的重要性。
塔玛拉菠萝蜜(Artocarpus tamaran Becc.)是桑科菠萝蜜属的一种,该属包含 74 种植物(POWO, 2024 )。该树种树高可达 45 米,树干直径可达 1 米,板根可高达 3 米(Kochummen, 2000 )。该物种是婆罗洲的特有物种,分布在沙捞越、沙巴、加里曼丹和文莱达鲁萨兰国,具体分布在低地至丘陵混合龙脑香科森林、河边、砂岩、粘土和冲积基质上(POWO, 2024;Jarrett, 1959 )。它也曾在海拔 20 米至 1800 米的原始或古老的次生林和砍伐林中发现(Jarrett, 1959 )。根据国际自然保护联盟 (IUCN) 的红色名录分类,Artocarpus tamaran 被列为易危 A2c(根据国际自然保护联盟的红色名录分类)( IUCN, 2024 )。该物种因栖息地丧失而濒临灭绝,栖息地已被改造成人工林、砍伐、烧毁和气候影响,例如在沙巴、砂拉越和加里曼丹( IUCN, 2024 ; POWO, 2024 )。该物种的树皮可用于生产纤维材料,用于生产布料和帽子( Kulip, 2003 ; Fern2014 )、新鲜水果和煮熟或烘烤后的可食用种子( Lim, 2012 )。该树干在当地术语中被称为“ terap ”,在建筑方面具有潜在的应用价值( Kochummen,2000 年)。该树种的木材价格为 22.90 美元/立方米
摘要本评论文章探讨了Amaranth的多方面旅程,Amaranth曾经是一种谦虚的农作物,作为营养力量和气候富裕的超级食品而引人注目。它深入探究了阿甘特斯的营养奇迹,突出了其对其他农作物的胜利及其独特的健康益处,包括加强健康防御和提供无麸质替代品。面对气候挑战的Amaranth的韧性得到了强调,展示了其在逆境中繁衍生息的能力,违背了土壤对抗,燃料土壤活力并充当防寒冠军。本文还强调了Amaranth在全球粮食安全,解决营养不良以及有望提高的收益率上的重要性。该评论进一步探讨了菜菜种植的创新冒险和机会,包括革命性的繁殖技术,基因组进步,机械化和市场潜力。采取行动的呼吁强调了需要拥抱菜am的非凡潜力,点燃其种植革命,将其融入烹饪实践并绘制未来的研究前沿。审查结束了,揭露挑战并概述了对未来的研究和政策的影响,巩固了Amaranth作为转化粮食系统的重要组成部分的地位,并确保食品和营养安全。
AP 安得拉邦 APCRDA 安得拉邦首都地区发展局 APPCB 安得拉邦污染控制委员会 APWALTA 安得拉邦水、土地与树木法 ASI 印度考古调查局 ASIIDP 阿马拉瓦蒂可持续基础设施与机构发展项目 BC 落后种姓 BOQ 工程量清单 C&D 建筑与拆除 CAO 主管部门办公室 C-ESMP 承包商环境与社会管理计划 CPCB 中央污染控制委员会 CTE 同意设立 CTO 同意运营 DLI 与支出挂钩的指标 DLR 与支出挂钩的结果 DMP 详细总体规划 DPMS 开发许可管理系统 DPR 详细项目报告 E&S 环境与社会 EC 环境许可 EHS 环境、健康和安全 EIA 环境影响评估 EMP 环境管理计划 EMRA 环境管理监管局 ESMD 环境与社会管理部 ESMF 环境与社会管理框架 ESSA 环境与社会系统评估 EWS 经济较弱部分 F&I 制定与实施 GBV 性别暴力 GIIP 良好国际行业实践 GO 政府命令 GoAP 安得拉邦政府