由于人口不断增长,粮食安全问题变得十分重要。作为固着生物,植物已经进化出复杂的机制来应对病原体。植物的生长发育需要营养物质的获取和运输,这些营养物质介导植物细胞信号传导并激活促生长和/或抗病原体基因的表达。营养物质,包括糖和氨基酸,是高产作物生产所必需的,但也与植物-微生物相互作用密切相关。微生物利用多种策略来适应植物,包括增强根细胞表面以吸收营养、竞争环境营养、劫持植物营养以及改变细胞营养运输和信号传导。这些有益或有害的影响会导致植物微生物群的转变。因此,分析营养物质在植物防御中的作用对于提高施肥效率至关重要。镰刀菌穗枯病 (FHB) 严重威胁小麦的质量和产量。赵等人。对抗性基因型苏麦3号和感病基因型山农20接种禾谷镰刀菌后代谢产物进行了分析,结果表明,不同品种间部分氨基酸含量发生了明显变化,外源施用脯氨酸(Pro)和丙氨酸(Ala)可增强小麦对禾谷镰刀菌的抗性,而外源施用半胱氨酸(Cys)则加重小麦的感病性,说明小麦的氨基酸代谢与抗性密切相关。尖镰孢菌是引起烟草根腐病的主要病原菌,严重影响烟草的生长。200F 的毒力测定 . oxysporum 菌株的鉴定以及表达模式的鉴定表明基因与毒力水平呈正相关,并表明 ATP 合成酶基因通过抑制烟草中糖最终输出转运蛋白 (SWEETs) 的表达水平对 F. oxysporum 的毒力很重要 [Gai et al.]。根结线虫 Meloidogyne incognita 感染显著改变了拟南芥中 SWEETs 的表达水平。组织学和遗传分析表明,M. incognita 感染诱导 AtSWEET1 在瘿中特异性表达,突变
蛋白质结构处于遗传控制之下;' - 3然而,DNAT影响蛋白质中特定氨基酸序列的形成的确切机制尚不清楚。几年前,发现具有某些有毒的噬菌体的大肠杆菌感染诱导了具有高代谢率的RNA馏分的形成,既具有高代谢率率,又是与感染病毒的DNA相对应的基础成分。4-6在非注射细胞中的存在中,也证明了无源性RNA成分的存在。然而,在这种情况下,RNA的基础组成类似于细胞DNA的基础组成。78这些观察结果集中在这种类型的RNA在蛋白质合成中的可能作用上,并且最近已经概述了与这种观点一致的某些证据。直到最近,最近还没有已知的DNA酶机制用于DNA指定的RNA的DNA酶机制。多核苷酸磷酸化酶'°11虽然催化了多吡丁而生核苷酸的合成,但本身并不能提供具有特定核苷酸序列的RNA的机制。产生独特的核苷酸序列的一个实例涉及核苷酸仅限于预先存在的多核苷酸链的结束。12-14因此,我们的努力是针对检查RNA合成的替代机制,尤其是DNA可能决定RNA的核苷酸序列的机制。实验过程。物质:未标记的核糖核苷二磷酸和三磷酸盐购自Sigma Biochemical Corporation和加利福尼亚州的生物化学研究公司。在本文中,我们希望报告来自大肠杆菌的RNA聚合酶的分离和某些特性,在DNA和四个天然存在的核糖核苷三磷酸中,它会产生与DNA的碱基成分相互补充的RNA。在过去的一年中,几个实验室报告了类似的发现,并从细菌以及动植物来源的酶制剂中进行了类似的发现。15-24在以下论文中,酶促合成的RNA对大肠杆菌核糖体在蛋白质核糖体中掺入氨基酸的速率和程度对蛋白质的蛋白质的影响。8-C14标签的ATP购自Schwartz生化公司; the other, uniformlv labeled, C14 ribonucleoside triphosphates were prepared enzymatically from the corresponding monophosphate derivatives25 isolated from the RNA of Chromatium grown on C1402 as sole carbon source.26 CTP labeled with p32 in the ester phosphate was obtained by enzymatic phosphorylation of CMP"2 prepared according to Hurwitz.27 The通过Lehman等人的过程获得了脱氧核苷三磷酸。25小牛胸腺和鲑鱼精子DNA通过Kay等人的方法分离。28DNA来自Perolocter Aerogenes Aerogenes Aerogenes,phlei和phlei phlei和细菌T5,T5,T5,T5,T5,T5,T5的phage。如前所述制备了来自大肠杆菌的未标记和p32标记的DNA。根据Schachman等人的32和Radding等人,制备了3'D-AT和D-GC聚体,“ 3”,“ 3,” 3。从枯草芽孢杆菌34的trans形成DNA是E. W. Nester的礼物,DNA来自噬菌体0x
b“蛋白质折叠是一个细微的过程,由原代氨基酸序列和细胞蛋白质质量控制机制编码并取决于错误折叠的蛋白质可以汇总成有毒的寡聚物或淀粉样蛋白原纤维,并与包括阿尔茨海默氏症和帕金森氏病以及II型糖尿病在内的疾病有关。这些淀粉样蛋白沉积物具有共同的跨结构,无论其主要氨基酸序列如何。最近的研究表明,生物分子冷凝物的形成是某些淀粉样蛋白蛋白质固有的另一种共同点。冷凝物的新兴生物物理特性可以调节蛋白质聚集;因此,了解淀粉样蛋白形成的结构和动力学基础以及蛋白质质量控制机制对于理解蛋白质错误折叠疾病和治疗剂的下游发展至关重要。本期特刊需要进行多样化和全面的概述,这些概述说明了来自生物物理,生化或细胞生物学观点的蛋白质错误折叠和神经退行性疾病。”
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年3月5日。 https://doi.org/10.1101/2025.03.04.641478 doi:Biorxiv Preprint
在实验室中生长微生物的能力可以使其遗传学的可重复研究和工程化。不幸的是,由于识别培养条件所需的努力,生命树中的大多数微生物仍然没有耕种。对指导实验测试的可行生长条件的预测将是非常可取的。虽然可以通过注释的基因在计算上预测碳和能源,但很难预测其他生长的要求,例如氧,温度,盐度和pH。在这里,我们开发了基于基因组的计算模型,能够预测氧耐受性(92%平衡精度),最佳温度(r 2 = 0.73),盐度(r 2 = 0.81)和pH(r 2 = 0.48),而新的分类微生物家族无需功能基因注释。使用15,596种细菌和古细菌的生长条件和基因组序列,我们发现氨基酸频率可预测生长需求。只有两个氨基酸可以预测氧气耐受性,其精度为88%。使用蛋白质的细胞定位来计算氨基酸频率改善了pH的预测(r 2增加0.36)。由于这些模型不依赖于特定基因的存在或不存在,因此可以将它们应用于不完整的基因组中,仅需要10%的完整性。我们应用模型来预测所有85,205种测序细菌和古细菌的增长需求,发现未养殖物种富含嗜热,厌氧菌和嗜酸菌。这项工作指导了对不同微生物实验室种植的生长限制的识别。最后,我们将模型应用于具有元基因组组装的基因组的3,349个环境样品,并表明社区中的个别微生物具有不同的增长需求。
摘要:粘多糖化病(MPS)由一组遗传性溶酶体储存障碍组成,这些遗传疾病是由参与糖氨基糖(Gags)代谢的某些酶的缺陷引起的。插孔的异常积累会导致儿童期在各种组织和器官的渐进功能障碍,导致过早死亡。由于当前的疗法是有限的且不具备的,因此需要探索病理学的分子机制,以满足MPS患者未满足的需求以改善其生活质量的需求。溶酶体半胱氨酸组织蛋白酶是一个在众多生理过程中起关键作用的蛋白酶家族。失调。本综述总结了有关MPS疾病及其目前管理的基本知识,并专注于MPS中的插科打s和半胱氨酸的组织蛋白酶的表达以及它们的相互作用,这可能导致与MPS相关疾病的发展。
功能细胞因子主要由活化的T淋巴细胞以及肥大细胞和成骨细胞分泌,这些细胞和成骨细胞控制造血祖细胞的产生和分化为谱系受限细胞。还刺激成熟的嗜碱性粒细胞,嗜酸性粒细胞和单核细胞在功能上激活。此外,在神经细胞增殖和存活中起着重要作用。也参与了骨稳态,并通过防止NF-kappa-b核易位和激活抑制破骨细胞的分化(PubMed: 341841841834475从机械上讲,通过由IL3RA亚基和转导亚基IL3RB的信号(通过相似性)组成的受体发挥其生物学作用。受体刺激导致JAK2激酶活性的快速激活导致STAT5介导的转录程序。另外,通过激活由PI3K/AKT和ERK介导的途径(通过相似性)介导的途径,从而有助于细胞存活。
摘要纳米技术已经改变了工业腐蚀的限制,提供了增强治疗结果的机会,同时最大程度地减少了不良影响。这项研究的重点是氨基和墨托型耦合剂的组合,以制造含硫的聚合物聚合物涂层的钴铁液纳米纳米粒子,以作为抗腐蚀的潜在应用。在这项研究工作中,两种类型的聚合物有限岩纳米复合材料由组成的单体组成,该单体由一个组成的单体组成,其中无机纳米颗粒核通过包含上述单体共聚物在分子的一端组成的共聚物的层覆盖。两个系统(包括基于卵磷脂表面活性剂的微乳液系统和游离卵磷脂乳液系统)分别用于合成纳米复合材料,并分别将其标记为PF-A和PF-B。用X射线衍射(XRD)和动态光散射(DLS)分析表征准备好的样品。制备的PF-A纳米复合材料提供了一种形成的膜,在金属表面上具有出色的抗腐烂特性而无需产生污泥,而不使用磷或铬在1.0 m HCl溶液中与PF-B相比,在1.0 m HCl溶液中,最大最大腐蚀抑制效率为1.5 wt。基于纳米量的1.5 wt。基于纳米体重的量度(MG/CMG/cmg/cmg/cmg)。研究了操作参数,例如温度和抑制剂浓度。用原子力显微镜(AFM)证实了在钢表面形成的膜表面形成的膜,所获得的结果揭示了彼此紧凑和对齐的球状纳米球,形成了针对腐蚀性环境的抗腐蚀屏蔽单层。AFM图像验证了钢板表面上的膜形成,并且由于胺和默西托托类型的耦合剂的独特组合具有协同作用,因此两种样品的抗腐蚀抑制作用的实验发现与对照样品相比。
摘要摘要,促进大豆粉减少和取代以及较低的蛋白质饮食技术,中国已成为饲料氨基酸的主要全球生产国。然而,由于氨基酸行业在独立发展工业菌株方面相对较晚而面临重大挑战,从而导致相对落后的主要经济和技术参数以及不那么强大的知识产权框架。合成生物学的快速进步为产生氨基酸的菌株设计和优化提供了有希望的途径,为氨基酸发酵行业提供了新的机会,以增强全球竞争力。这项研究对国内和国际市场对饲料氨基酸的需求进行了深入的分析,系统地回顾了微生物氨基酸生产中的关键技术突破,并确定了家庭氨基酸行业面临的主要挑战。此外,它还进一步探讨了微生物氨基酸产生的未来发展趋势和挑战,并提出了一系列有针对性和全面的解决方案,以提供深入的见解和指导,以为微生物氨基酸行业的稳定和加速增长提供指导。
免疫疗法的基本问题是大多数类型的肿瘤中缺乏肿瘤特异性抗原,从而导致免疫耐受性。对于大约85%的微卫星稳定患者(MSS)结直肠癌(CRC),缺乏肿瘤新抗原会导致免疫疗法功效不佳。我们先前的研究表明,非蛋白酶脯氨酸(PRO)类似物氮氮杂氨酸-2-羧酸(AZE)的掺杂可能会产生突变的蛋白质,从而显着增强肿瘤细胞抗原性和抗肿瘤免疫反应。方法:为了激活更特异性的抗肿瘤免疫反应,副作用较少,我们利用了非蛋白质生成丝氨酸(SER)类似物β-N-甲基氨基氨基 - L-丙氨酸(BMAA),可以通过适当的速率将其用作Seryl TRNA合成酶将其掺入蛋白质中。BMAA掺入的新抗原,并在鼠CRC模型中选择了具有高抗原性的癌细胞富集肽,以制备基于BMAA的自组装纳米颗粒(SAN)。单细胞测序,以分析由SAN疫苗接种诱导的免疫反应,并结合Toll样受体7激动剂(TLRA)辅助和BMAA治疗。结果:San-TlrA接种BMAA治疗诱导了抗肿瘤免疫微环境。这种组合刺激了特定CD8 + T细胞的产生和靶向BMAA的IgG衰老的Neopitopes,最终促进了CRC鼠模型中的免疫激活,抑制肿瘤和延长生存率。这种方法为CRC免疫疗法提供了新的途径。此外,BMAA与SAN疫苗相结合,显着增强了免疫检查点抑制剂抗PD-1抗体的功效。结论:我们的发现提供了一种有前途的策略,用于使用BMAA人为地引入新抗原,这可以破坏免疫耐受性而不会破坏全身免疫平衡。