作为各种心血管疾病的终末阶段,由于其高死亡率和有限的治疗选择,心力衰竭引起了极大的关注。研究人员目前正在集中精力研究碳水化合物,脂肪酸和氨基酸的代谢,以增强心血管疾病的预后。同时,包括亮氨酸,异亮氨酸和缬氨酸在内的分支链氨基酸(BCAA)在血糖调节,蛋白质合成和胰岛素敏感性中起着重要作用。然而,BCAAS代谢的破坏与高血压,肥胖和动脉粥样硬化等疾病有关。本文探讨了复杂的代谢途径,揭示了破坏的BCAA代谢与心力衰竭进展之间的联系。此外,本文讨论了治疗策略,评估了BCAA对心脏功能障碍的影响,并研究了调节BCAA代谢作为心脏衰竭治疗的潜力。BCAA及其代谢产物也被认为是评估心脏代谢风险的生物标志物。总而言之,本文阐明了BCAA在心力衰竭和心血管健康中的多方面角色,为未来的研究和干预措施提供了指导。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年10月2日发布。 https://doi.org/10.1101/2023.10.01.560396 doi:biorxiv preprint
此预印本版的版权持有人于2023年8月28日发布。 https://doi.org/10.1101/2023.08.27.23294702 doi:medrxiv preprint
抽象引入低血糖是为1型糖尿病患者实现推荐血糖靶标的主要限制因素。暴露于复发性低血糖会导致对低血糖的荷尔蒙反调节和症状反应。有限的有关反复转化低血糖的代谢适应性数据有限。这项研究检查了对低血糖症的急性代谢反应以及先决性低血糖对1型糖尿病中这些反应的影响。研究设计和方法二十一名门诊患者患有1型糖尿病,患有正常或受损的低血糖意识参与了一项研究,该研究通过高胰岛素葡萄糖钳连续2天评估了对低血糖的反应。参与者在高胰岛素葡萄糖夹期间经历了一段正常血糖和低血糖期。血浆样品在正常血糖期间以及降血糖时期的开始和结束时采集。对等离子体样品的代谢组分析是使用综合二维气相色谱法进行了飞行时间质谱。总共研究了68个代谢产物。在第1天,分支链氨基酸的浓度,亮氨酸(P = 3.8×10 -3)和异亮氨酸(P = 2.2×10 -3),在低血糖期间降低。在低血糖期间,第2天,五种氨基酸(包括亮氨酸和异亮氨酸)显着降低,两种脂肪酸(四核酸和油酸)显着增加(p <0.05)。在1型糖尿病患者中得出结论,低血糖的一集降低了亮氨酸和异亮氨酸浓度。尽管在第2天对低血糖的反应反应更多,但在2天之间,单个代谢产物的反应在统计学上没有统计学意义。先前的低血糖导致五种氨基酸的降低,并增加了两种脂肪酸的浓度,这表明两种低血糖发作之间发生了变化,这可能表明可能适应。但是,需要更多的研究来全面了解这些改变的后果。试用注册号NCT01337362。
1米兰大学医学生物技术与转化医学系的肥胖研究中心,通过Vanvitelli 32,米兰,20129年,意大利; 2人类研究医院心血管医学系,Manzoni 56,20089 Rozzano(米兰),意大利; 3人类大学生物医学科学系,通过Rita Levi Montalcini 4,20090 Pieve Emanuele(米兰),意大利; 4麻醉,医学和生理学系,美国加利福尼亚大学90095 CA,美国加利福尼亚分校的David Geffen医学院; 5意大利国家研究委员会,遗传学与生物医学研究所,米兰,20090年,意大利; 6意大利安科纳60126的马尔凯理工大学实验与临床医学系;和布雷西亚大学布雷斯西亚大学分子与转化医学系7,意大利25123
由于对有用燃料的需求增加,将重量的碳氢化合物升级到柴油和汽油等轻燃料已变得越来越流行。1石油行业中最困难的问题是生产高质量的燃料。2,3碳钢管道,储罐和重新建筑物的基础设施,这些基础设施携带原油4 - 6的腐蚀,这在石油和天然气行业是一个严重的问题,并且经常导致设备故障和失真。7,8金属与原油元素(如硫和萘有机酸)(如萘和萘酸)相互作用时,可能会发生腐蚀。9 - 11油井酸阳离子也会导致腐蚀。需要12,13进一步的研究来了解这些材料如何应对腐蚀性条件。14个碳钢(CS)已在石油的各种情况下大量使用
Q132K 136 Ni(1)HRI(702)HRI(131)HRI(313)体外; RECNA(74)R148K 152 Ni(1)Ni(5)Ni(3)Ri(16)Ri(16)RI(16)体外; RECNA(74)I219K 222 RI(46)RI(17)RI(11)RI(27)体外; RECNA(74)I219L 222 Ni(5)Ni(2)Ni(1)Ni(2)Rg(76)Rg(76)Rg(76)I219R 222 RI(38)Ni(2.5)Ni(2.5)Ni(8.6)ri(8.6)Ri(8.6)Ri(8.6)Ri(8.6)Ri(63)in Vitro; Shur(74)T244P 247 RI(27)RI(69)Ni(4)Ni(4)Ni(4)Ni(9)体外; RECNA(74)H271Y 274 HRI(105)Ni(2)Ni(9)Ni(2)体外; South(74)E273d 276 Ri(13)HRI(427)RI(25)RI(90)体外; RECNA(74)R289K 292 HRI(> 4600)RI/HRI(11-67)HRI(405–2487)RI(16-35)在体外; rg; SUR(74,75,77,77)N291S 294 Ni(2)RI(10)Ni(1)Ni(1)Ni(1)Ni(1)Ni(3)体外; RECNA(74)R367K 371 RI(70)RI(64)RI(29)RI(19)体外; RECNA(74)E115V+I219L 119+22222 RI/HRI(306)Ni(8)Ni(2)Ni(2)Ni(4)RG(76)RG(76)B型,不是First Ni(2-3)RI(2-3)Ri(2-3)HRI(30-34)Ri(30-34)Ri(4-5)Ri(4-5)南:RG(79)
哺乳动物新皮层是最近的进化结构,与人类的认知能力较高有关。新皮层的大小和形状在妈妈的种类中也有所不同,甚至在灵长类动物中(Herculano-Houzel 2019; Rakic 2009; Zilles等,2013年)。与其他灵长类动物相比,人类在对现代人类的发展过程中获得了最扩展,最复杂的新皮层(Rakic 2009)。新皮质扩张取决于神经茎和祖细胞(NPC)的增殖能力以及随后的神经元产生(Cárdenasand Borrell 2020; Lamonica等,2012; Namba and Huttner 2017; Namba and Huttner 2017; Rash efters 2017; Rash及其他2019; Sun and Hevner 2014; sun and Hevner 2014;图》;1)。npc可以分为两个主要类别:顶端祖细胞(AP),主要由顶端radial胶质神经胶质(ARG,也称为心室径向胶质胶质,VRG)和基础祖细胞(BPS)组成,这些祖细胞(BPS)包括基础中间的祖先(BIPS)和基底radial Glia(也称为BRG)(BRG)(BR GLIA)(BR GLIA)(BR GLIA)(BR GLIA)(BR GLIA,ORADIAL,ORADIAL as COL)。AP和BP分别位于发育中的新皮层的心室(VZ)和室室(SVZ)中。arg主要在新皮层的早期发展期间扩大了数量,然后在中期到后期开始生产BP(Cárdenasand Borrell 2020; Namba and Huttner 2017; Sun and Hevner 2014)。自
组氨酸生物合成的步骤(Sissler等,1999)。 与AS-A相反,HISZ仅在细菌156 中发现组氨酸生物合成的步骤(Sissler等,1999)。与AS-A相反,HISZ仅在细菌156
摘要:复发儿童急性淋巴细胞白血病(CALL)的患者的预后仍然很差。治疗失败的主要原因是耐药性,最常见于糖皮质激素(GC)。泼尼松龙敏感和耐药性淋巴细胞之间的分子差异未得到充分研究,从而排除了新型和靶向疗法的发展。因此,这项工作的目的是阐明匹配的GC敏感和耐药细胞系之间分子差异的至少某些方面。为解决这个问题,我们进行了整合的转录组和代谢组学分析,该分析表明,缺乏对泼尼松龙的反应可能是由于氧化磷酸化,糖溶解,氨基酸,丙酮酸和核苷酸生物合成的变化而受到的基础,以及MTORC1和MyC的激活以及Myc的激活,以及Myc的激活,以及Myc的激活。试图通过三种不同的策略探索我们分析中抑制一种打击的潜在治疗作用,以三种不同的策略为目标,它们针对谷氨酰胺 - 谷氨酸 - α-酮戊二酸轴轴,所有策略都受损了,这些策略都受损了,这些策略受损,线粒体呼吸和ATP产生和诱导了凋亡。因此,我们报告说,泼尼松龙的抗性可能伴随着相当大的转录和生物合成程序的重新布线。在这项研究中确定的其他可药物靶标的抑制作用抑制谷氨酰胺代谢在GC敏感的敏感性中呈现了一种潜在的治疗方法,但更重要的是,在GC耐药的呼叫细胞中。最后,在复发的背景下,这些发现可能在临床上具有相关性 - 在公开可用的数据集中,我们发现基因表达模式表明,体内耐药性的特征在于与我们在体外模型中发现的相似代谢失调。
