摘要:氨越来越多地被认为是潜在的发射和可持续能量载体。通过水电解从可变的可再生能源(VRE)产生无氨(VRE),很快就会在经济上可行。氨是一种相对便宜且安全的介质,用于氢运输和存储,可以应对时和空间上可再生能源供应的可变性,并促进VRE在能量系统中的渗透。此外,氨具有有希望的特性作为一种燃料,可以通过直接燃烧或使用燃料电池的使用来检索存储的能量,以满足VRES生产低时的热量和功率需求。尤其是其高辛烷值等级使其适合于火花点击(SI)发动机,这可能是用于局部热量和发电的低成本,低复杂性,高可靠性解决方案。功率 - tomonia to-to-power和热量(P2A2P+H)因此,在新的能源系统中可能是一个有趣的桥接概念。但是,这种技术的成熟度较低,其经济表现非常不确定且难以量化,从而减慢了他们的实施。因此,目前的工作提出了基于风电场的网格辅助P2A2P+H系统的成本评估,氨的生产和存储厂以及为住宅区提供电力和热量的SI发动机发电机。最佳系统设计是通过基于遗传算法的多目标优化方法研究的。季节性存储似乎特别相关,氨系统为消费者提供了不可忽略的热量。的结果表明,如果网格价格上涨,这种系统可能会在商业上具有竞争力,并允许当地能源系统高度自我足够,从而防止与VRES份额提高相关的关闭风险。
农业负责爱尔兰共和国和该国的99.4%的氨(NH 3)排放量未能遵守欧盟国家排放天花板指令(NECD)在过去11年的9年中的9个限制。因此,迫切需要减少NH 3排放以控制空气污染并缓解其他相关的环境和健康危害。本研究在爱尔兰共和国的不同农场类型上进行了农场级别的边际减排曲线分析。该研究还解决了所考虑的减排方案之间的相互作用,并探讨了农场系统异质性的存在。这允许评估是否是在不同农场系统中采取缓解措施的优势。的发现表明,本研究中检查的措施可有效减少NH 3在不同农场类型的不同水平上的排放量。缓解措施,例如石灰,改用受保护的尿素以及牲畜饮食中的粗蛋白质降低主要是节省成本,而增加的三叶草措施则根据农场系统类型在省成本和成本阳性之间移动。本研究通常支持整个农场类型的异质性,强调应量身定制最佳政策设计以反映农场的特征。此外,与由于相互作用效应引起的单个措施的总和相比,据报道,对所选缓解措施的综合实施的减排潜力较低。
氨是最广阔的化合物之一,全球年产量超过1.9亿吨(平均2019 - 2023年),其中约有1,850万吨。氨是衍生出所有基于氮的肥料的基本原料。制造氨是一种高能量密集型的Haber-Bosch工艺,因此,大气中的氮与化石燃料材料(天然气或煤炭)反应,也称为原料。氨植物需要大约32-3600万英国的热量天然气,以生产1吨氨。因此,氨植物通常位于天然气(例如在近东,俄罗斯联邦,特立尼达和多巴哥,阿尔及利亚和埃及)附近,尽管进口的液化天然气(LNG)越来越多地在印度使用。中国还具有从煤炭而不是天然气生产氨的能力。根据国际能源机构(IEA)的说法,氨产量约占最终能源总消耗总量的2.0%,占二氧化碳(CO 2)的1.3%的能源系统排放量。天然气基氨植物使用蒸汽改革过程,而煤炭植物则使用部分氧化或煤气化。
本文探讨了绿色氨 (NH3) 作为船用燃料在向脱碳航运转型过程中的可行性。虽然没有单一的解决方案来实现脱碳,但人们越来越认识到绿色氨在航运业脱碳方面的关键作用。该研究采用综合模型估算 2030 年和 2050 年的生产、储存和配送成本,重点关注光伏和风力发电具有竞争力的地区。主要发现表明,虽然平准化电力成本 (LCOE) 是一个关键因素,但即使预计到 2030 年成本会降低,与绿色氨相关的高成本仍可能持续存在。技术创新和规模经济等因素可能有助于成本下降,但大幅降低取决于政府的支持性政策。到 2050 年,成本预计仍将居高不下,这凸显了政策支持对经济可行性的必要性。最终,提高绿色氨的经济可行性需要采取多方面的方法,包括财政激励、监管框架和技术进步。本文强调,包括绿色氨在内的多种替代燃料对于满足海运业的能源需求至关重要,并提倡采用灵活的多燃料战略来应对航运业脱碳的挑战。
资料来源:IEEFA注意:给定年份的绿色氨成本代表了当年开始建设的设施的生产成本,该设施采用了在2027-28财年开始的政府税收优惠。2025年的成本从原始IEEFA分析缩放,以反映最近的通货膨胀和供应链压力,并线性插值到2030年值。2025年至2030年之间的成本已插值线性,并且是近似的。绿色氨成本范围代表了所有已确定为绿色氢产量吸引的地区的成本。指定目前产生氨的四个地区的潜在生产成本。灰色氨的成本基于先前对潜在市场动态的IEEFA分析,对应于2020年代末和2030年代初的可能范围。
摘要:基于统计数据的分析,计算了2010 - 2020年波兰大麦的平均面积和大麦的平均收率。大麦是波兰种植的最重要的谷物之一。在这些年中,其栽培面积平均占920,595公顷,平均产量为3.66 mg∙ha -1。大麦是一种谷物,主要是春季谷物。这些年中春季物种下的平均面积占该谷物总面积的95%(875,771公顷),春季品种的平均产量为3.60 mg∙ha -1。为了估计温室气体(GHG)和氨(NH 3)的排放,分析了所选大麦培养技术的无机肥料的排放源(无机肥料,燃料消耗),通过产量水平有所不同,并开发了变异的模型生产技术以获得预测的产量。计算了单个温室气体(N 2 O,CH 4和CO 2)的排放,并根据每种气体的温室电位(GWP - 全球变暖潜力)进行重新计算,以便能够比较被分析的变体的温室气体排放的总量。耕种技术的温室气体排放量为134.53至136.48 kg CO 2 EQ,1 mg产量。考虑到土壤状况和气候区,使用了更准确的层2方法来估计NH 3排放。矿物质肥料的施用估计的氨排放量为1 mg的收率为0.99 kg至2.35 kg。
当今,发电厂工程师主要关注如何最大限度地提取燃料能量。这一目标涉及根据热力学第一定律和第二定律提高不同热力学要素和整个循环的效率。为实现这一目标,工程师们采用了各种旨在提高这些效率的技术。在目前的研究中,所使用的一种技术是用不同的工作流体替代水/蒸汽。通过改变工作流体,工程师们旨在优化发电厂的热力学性能。在本研究中,分析重点是氨水混合物与跨临界二氧化碳在热回收蒸汽发生器中的应用。研究结果表明,实现的最高功输出和第二定律效率分别为 1192 kJ/秒和 81.68%。当顶部循环压力设置为 50 bar,并且涡轮机入口温度分别为 500°C 和 300°C(氨水混合物和跨临界二氧化碳)时,可获得这些最佳值。此外,当顶循环压力设置为 50 bar、底循环压力设置为 160 bar 且涡轮机入口温度为 300°C 时,可观察到 43.57% 的最大第一定律效率。分析还表明,热源是造成大部分能量破坏的原因,在 500°C 的温度下,最多有 1970 kJ/秒的可用能量被破坏。为了实现热力学性能参数的最高值,建议在吸收器和冷凝器中保持低压。此外,分析表明,当冷凝器压力设置为 70 bar 时,发电成本达到峰值,达到 0.050 美元/千瓦时。
氨是减少温室气体排放的另一种海洋燃料。进行有关氨掩埋风险的研究是必不可少的,因为氨是对人类和环境的毒性和腐蚀性的。这项研究旨在从中小型释放量表的角度评估氨掩埋的操作风险。从小到中期的缩放释放会导致较低气体浓度下的云足迹的更多变化。相反,从培养基到大释放的过渡会在较高的气体浓度和具有较高值的杀伤力足迹下导致云足迹的更多变化。此外,这项研究对氨基供应,释放和气象因素进行了敏感性分析。风速是中小型释放中最重要的因素,而软管直径是大释放中最重要的因素。在给定的输入下,风速变化50%的变化可能会在1100 ppm的最大云足迹中变化高达100%,而中型发行版的变化可能会更改663%。同样,软管直径的50%变化可能会导致大型释放的1100 ppm最大云足迹的变化1689%。考虑到不同的风险评估标准,该研究为分析氨掩埋的操作风险提供了宝贵的见解。
