和东北地区分别为46.9%和60.0%。泰国中部和南部地区幽门螺杆菌感染的患病率分别为39%和14.4%(3)。根据2015年幽门螺杆菌治疗的泰国共识,一线方案是基于PPI的标准三重治疗,包括质子泵抑制剂(PPI),阿莫西林和克拉氏霉素或甲硝唑10-14天。该方案报告的幽门螺杆菌的根除率为85%(4)。一种替代的一线方案是前5天的顺序治疗,包括PPI和阿莫西林,在接下来的5天中PPI,Clarithromy-cin和甲硝唑。顺序方案的幽门螺杆菌的根除率为90%(5,6)。另一种替代一线方案是伴随疗法,其中包括PPI,阿莫西林,明霉素和甲硝唑10天。与幽门螺杆菌的根除率为96.4%(7)。
在这项回顾性研究中,评估了从人类,各种样本(血液,脾脏,肺,肺,肝,肝脏,肉类)中获得的炭疽芽孢杆菌分离株的抗菌易感性谱,死动物(牛,绵羊,狗,狗,狗,马)死于炭疽病和土壤中,这些动物死于炭疽病和土壤中,这些动物是从2012年和2023年之间的动物埋葬区中的,来自动物埋葬区和20233年的20233年。在这种情况下,研究了从1人,两匹马,51头牛,7只绵羊,1只狗和25个土壤中获得的炭疽病分离株。使用保护性抗原(PA)和胶囊(CAP)Gen特异性PCR将分离株证实为炭疽芽孢杆菌。使用Kirby-Bauer磁盘扩散方法来恶化抗菌敏感性。在测试了十种包括青霉素,阿莫西林,甲氧苄啶 - 硫唑嗪,红霉素,美霉素,链霉菌蛋白,氧法,环丙沙星,环丙沙星,氯霉素和克林霉素。由于PCR,所有分离株均被确认为炭疽芽孢杆菌的完全毒物场菌株。所有分离株都易受青霉素,阿莫西林,氧氟沙星和环丙沙星的敏感。自从该地区的最后一项研究以来,仅观察到尚硫邻苯二酚 - 磺胺甲氧唑的抗菌菌菌株的抗菌谱发生变化,这是对抗微生物测试的抗菌素的变化,这是从耐药性转变为耐药性的转变。总而言之,青霉素和阿莫西林仍然是预防和治疗炭疽病的首选的抗生素。loxacin和环丙沙星的有效性也足够有效,可以接受治疗。
•PDL是药物和治疗学(P&T)委员会审查的100多个治疗类别的清单。除了在提供商手册中列出的排除药物类外,在此PDL中未包含的药物几乎总是涵盖的,而无需事先授权。例子:地高辛,氢氯噻嗪,阿莫西林悬浮蛋白
抗感染 • 主要产品包括安弗里克(注射用两性霉素B胆固醇硫酸酯复合物)、舒罗克(注射用美罗培南)、诺莫灵(阿莫西林胶囊)、仙趣(注射用头孢曲松钠)、仙吾(注射用头孢唑林钠)、中诺立信(注射用头孢呋辛钠)、维红(阿奇霉素片/胶囊/肠溶片、注射用阿奇霉素)
氨苄西林* 类别:β-内酰胺 概述 氨苄西林,俗称广谱青霉素,是一种氨基青霉素,是一类半合成的 β-内酰胺,专门用于对抗革兰氏阴性菌和革兰氏阳性菌。氨基青霉素是通过将青霉素与氨基或侧链连接而生成的。添加侧链会显著改变药物对某些细菌的活性。最初,这些抗菌药物对奇异变形杆菌、大肠杆菌、志贺氏菌、沙门氏菌、嗜血杆菌和奈瑟菌有效。然而由于易感性的变化,氨苄西林不再是治疗这些菌感染(如大肠杆菌尿路感染)的首选药物,除非培养和药敏结果表明易感。氨苄西林的作用机制是通过附着于青霉素结合蛋白 (PBP) 来干扰细胞壁合成,抑制细胞壁肽聚糖合成和使自溶酶抑制剂失活。耐药性 氨苄西林通常也被 β-内酰胺酶灭活(有关获得对 β-内酰胺的耐药性的信息,请参阅青霉素部分。)。近年来,屎肠球菌和肺炎链球菌开始通过突变表现出低亲和力 PBP,这是对氨基青霉素的耐药机制。有效性 氨苄西林和阿莫西林具有相同的活性谱,尽管阿莫西林的特点是生物利用度更高。对氨苄西林和阿莫西林普遍敏感的菌属包括葡萄球菌、链球菌、棒状杆菌、梭状芽孢杆菌、大肠杆菌、克雷伯氏菌、志贺氏菌、沙门氏菌、变形杆菌和巴氏杆菌,尽管其中许多细菌已获得耐药性。氨苄西林通常用于治疗革兰氏阴性肠道细菌引起的泌尿道感染。该药物还用于治疗呼吸道感染。此外,氨苄西林对 B 组链球菌均有效,但对肠杆菌、流感嗜血杆菌、假单胞菌和吲哚阳性变形杆菌感染无效。有关体液和脑脊液吸收的解释,请参阅青霉素部分。 *可根据要求提供参考资料。致电路易斯安那州卫生与医院部公共卫生办公室传染病流行病学科 (504-219-4563)
原创作品已正确引用。保留所有权利。本研究调查了从龋齿感染者中获得的口腔变形链球菌的抗生素耐药性。变形链球菌分离株是从龋齿和非龋齿个体的牙齿提取物中获得的。测试了四种不同抗生素(即氨苄西林、阿莫西林、青霉素 G 和四环素)在六种不同浓度(5、10、15、20、25、30 µg)下的效果。确定了从龋齿和非龋齿个体中获得的变形链球菌分离株中是否存在 R 质粒。变形链球菌对抗生素的耐药性依次为:氨苄西林 > 四环素 > 阿莫西林 > 青霉素 - G;抑菌圈直径依次为 22、24、28 和 29 毫米。从龋齿患者体内分离出的变形链球菌中存在 R 质粒,而无龋齿患者体内则不存在 R 质粒。关键词:抗生素耐药性、龋齿、变形链球菌、R 质粒。引言 蛀牙是牙齿脱落的主要原因,会导致牙源性感染 (Rayan et al., 2004)。这种传染病是由重要的口腔绿色链球菌引起的。变形链球菌是一种革兰氏阳性、不形成孢子、过氧化氢酶阴性、兼性厌氧球菌,常见于人类口腔。变形链球菌是一种
抽象的β-内酰胺抗生素是人类和兽医医疗保健中最应用的抗菌剂。因此,β-内酰胺抗性是一个主要的健康问题。AMPCβ-内酰胺酶的基因扩增是导致大肠杆菌中从头β-LAC TAM抗性的主要因素。但是,放大和随附的DNA突变的时间过程尚不清楚。在这里,我们研究了通过逐步增加阿莫西林浓度引起的抗药性演变,AMPC扩增和AMPC启动子突变的进展。AMPC启动子突变发生在第2天,而大约八倍的扩增发生在阿莫西林暴露超过6天后。放大和启动子突变的组合在22天后将AMPC mRNA水平提高了200个。a是1插入在野生型(WT)和AMPC基因互补菌株(COMPA)的耐药性诱导后的扩增连接中的插入,但在∆ AMPC中未鉴定,这表明扩增取决于移动遗传元件的转移。为了阐明基因突变与AMPC扩增之间的相关性,分析了WT,∆ AMPC和COMPA在电阻演化过程中获得的DNA突变。与进化的∆ AMPC相比,进化的WT中没有几种引起抗性突变,而在应力反应中积累了更多的突变。抗阿莫西林的ΔAMPC没有显示出原始AMPC位置周围片段的扩增,而是在另一个位置表现出很大的重复或一式三次,这表明重复基因在耐药性发展中的重要作用。
重要的机会性人类病原体肺炎链球菌中的抽象抗生素抗性正在上升。在β-乳酰胺抗生素阿莫西林(这是一线疗法)的情况下,这尤其有问题。因此,发现杀死或对抗阿莫西林耐药性肺炎球菌的靶标至关重要。为此,我们使用称为Scrilecs-Seq的CRISPR干扰(CRISPR干扰库的亚集)开发了一个全基因组,基于单细胞的基因沉默屏幕,该筛选是由荧光激活的细胞分选提取的,耦合与下一代测序)。由于阿莫西林会影响生长和分裂,因此使用SCRILECS-SEQ来识别负责维持适当细胞大小的靶标。我们的屏幕表明,大甲酸酯途径的下调会导致广泛的细胞伸长。进一步研究这种现象,这表明它是由于细胞壁合成部位在细胞壁合成部位的可用性降低而引起的,这是由于未依赖磷酸盐(UND-P)的限制,这是脂质载体,该脂质载体负责将这些前体跨细胞膜运输。数据表明,即使肽聚糖的合成仍在继续,即使降低了UND-P水平,但细胞收缩也被专门停止。我们成功利用了这一知识,以创建一种组合治疗策略,其中FDA批准的药物氯米芬是一种UND-P合成的抑制剂,与阿莫西林配对。我们的结果表明,克罗米芬增强了阿莫西林蛋白的抗菌活性,并且联合疗法使耐肺炎链球菌恢复活力。这些发现可以提供一个起点,以开发越来越多的难以治疗的抗肺炎球菌感染的解决方案。
未经事先授权,他们将被覆盖。对于无法吞咽口服片剂或胶囊的成员,兰索拉唑悬架(第一兰索拉唑)和奥美拉唑悬架(第一 - 奥美普拉唑)是首选的PPI。他们将在13岁及以下的成员事先授权的情况下获得覆盖。
