循环介导的等热扩增(LAMP)是一种新的以其等温特性,高效率,灵敏度和特异性而闻名的核酸检测方法。灯使用的4至6个引物针对所需序列的6至8个区域,从而在60至65°C之间的温度下进行扩增,并且在一个小时内最多生产10个9拷贝。可以通过各种方法(例如浊度法,荧光法和比色法)监测产品。然而,它面临着诸如非特异性扩增的风险,引物设计的挑战,对短基因序列的不适合性以及多重多路复用的困难。聚合酶和底漆设计的最新进展提高了灯反应的速度和便利性。此外,将灯与滚动圆扩增(RCA),重组酶聚合酶扩增(RPA)和CRISPR-CAS系统等技术相结合,提高了其效率。灯与各种生物传感器的组合启用了实时分析,扩大了其在护理测试(POCT)中的应用。微流体技术进一步促进了灯的自动化和小型化,从而可以同时检测多个靶标并防止污染。本评论重点介绍了LAMP的进步,重点是底漆设计,聚合酶工程及其与其他技术的集成。持续改进和将灯与互补技术的整合显着增强了其诊断能力,使其成为快速,敏感和特定的核酸检测的强大工具,并具有对医疗保健,农业和环境监测的有希望的影响。
注意:对于SAA转换器,在转换时间点之前和之后提供了队列特征(即分别使用CSF 𝛼 -SYN SAA-的最后一个时间点,分别与CSF 𝛼 -SYN SAA +的第一个时间点)。n(%),用于连续变量的中位数(IQR)。在支持信息中,表S1提供了临床和生物标志物数据的数据计数和百分比。缩写:β,淀粉样蛋白β; ADAS-COG11,阿尔茨海默氏病评估量表认知子量表11-项目; Ancova,协方差分析;方差分析,方差分析; apoe,载脂蛋白E; CDR-SB,临床痴呆评级盒子的总和; CSF,脑脊液;铜,认知没有受损; MCI,轻度认知障碍; MMSE,小型国会考试; PACC,临床前阿尔茨海默氏症的认知复合材料; p-tau181,磷酸化的tau181; SAA,种子扩增测定法。皮尔森的卡方测试。b单向方差分析。c Fisher精确测试。d Ancova针对年龄,性别,教育,诊断和APOE进行了调整。e Ancova针对年龄,性别,教育,APOE,诊断和CSFAβ42状态进行了调整。f逻辑回归针对年龄,性别,教育,诊断和APOE进行了调整。g配对t检验:所有连续变量; McNemar测试:所有二进制变量;配对标志测试:诊断。
1泰国清迈50200的清迈大学健康科学研究所; sayamon.ho@cmu.ac.th 2 Lucent International合作,合作医学科学学院,Chiang Mai University,Chiang Mai 50200,泰国; nangkhamkjing_nang@cmu.ac.th(N.K.-K。); nuttadap@uw.edu(n.p。); nicole.ngo-giang-huong2@ird.fr(N.N.-G.-H。)3医学技术系,泰国清迈50200的恰格·梅大学相关医学科学系; piyagorn.m@gmail.com(p.m.); wannaporn.d@cmu.ac.th(W.D.); nuntita.nan@gmail.com(n.k。); jaiyapan@gmail.com(N.J。)4泰国Phayao 56000 Phayao大学医学科学学院; nongaon00366@gmail.com 5美国华盛顿州西雅图市华盛顿大学生物工程系98195; klinee@uw.edu 6 Department of Global Health, University of Washington, Seattle, WA 98195, USA 7 Maladies Infectieuses et Vecteurs: É cologie, G é n é tique, É volution et Contr ô le (MIVEGEC), Agropolis University Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Pour le développement(IRD),34394蒙彼利埃,法国8国际联合实验室Presto,Chiang Mai 50200,泰国 *通信:woottichai.k@cmu.ac.ac.th
图3。增加MGCL₂浓度对目标下90%的扩增的影响。富裕的s。金黄色葡萄球菌gDNA靶序列使用Phusion Plus Plus DNA聚合酶在Proflex PCR系统上进行扩增。每个20 µL反应含有10 ng的s。金黄色葡萄球菌和另外1 mm,1.5 mm,2 mm或2.5 mmmgcl₂。热循环条件:98°C的30秒;在98°C,最佳退火温度下10秒的10秒循环(表4),在64°C时为1分钟/kb;在64°C下5分钟。PCR产品以2%E-Gel 48含Sybr安全染色的琼脂糖凝胶运行。车道M:E-GEL 1 KB Plus Express DNA梯子。
摘要 - 高增益和量子限制噪声的放大是一个困难的问题。使用具有高动力学电感的超导传输线的参数放大不仅是解决此问题的一种有前途的技术,而且还增加了一些好处。与其他技术相比,它们具有改善功率饱和度,实现较大的分数带宽并以较高频率运行的潜力。在这种类型的放大器中,选择适当的传输线是其设计中的关键元素。鉴于当前的制造局限性,传统的线路(例如Coplanar WaveGuides(CPW))并不理想,因为很难使它们具有适当的特征阻抗,以使其具有良好的匹配和足够慢的相位速度,以使其更加紧凑。电容载荷线,也称为人造线,是解决此问题的良好解决方案。但是,很少提出设计规则或模型来指导其准确的设计。考虑到它们通常是以Floquet线的形式制造的,这一事实更加重要,必须仔细设计以抑制参数过程中出现的不希望的谐波。在本文中,我们首先提出了一种新的建模策略,基于电磁仿真软件的使用,其次是一种促进和加快CPW人造线和由其制成的Floquet线的设计的第一原理模型。然后,我们与实验结果进行了比较,以证明其准确性。最后,理论模型允许人们预测人造线的高频行为,表明它们是实现100 GHz以上参数放大器的良好候选者。
病原体被定义为一种传染性微生物或病原体,其中病毒和细菌是临床上最常见的(Casadevall and Pirofski,2002)。这些病原体具有高度可进化性、致病性和迅速传播性,对人类健康构成严重威胁。微生物控制计划越来越多地被全社会采用,以降低消费者感染的风险。细菌培养法因其在常见实验室实验中的稳健性而被广泛认为是病原体检测的“金标准”。然而,它具有耗时、费力和检测效率低等缺点,这严重阻碍了其在临床上的广泛使用。另一种方法是免疫检测,它基于特异性抗体对抗原的识别和结合(Kohl and Ascoli,2017)。虽然它在检测病原微生物方面具有速度快、简单、特异性强等优势,但需要较长的抗体制备时间,检测灵敏度也较低。核酸检测技术与上述方法不同,能够同时满足病原体检测的准确性、快速性和灵敏度的要求,在保障人类安全方面更显优越性。
摘要 我们利用聚合酶链式反应 (PCR) 从人类基因组 DNA 中扩增出长达 22 kb 的 3-珠蛋白基因簇,并从噬菌体 A DNA 中扩增出长达 42 kb 的 3-珠蛋白基因簇。我们还直接从重组 A 斑块中扩增出 91 个 9-23 kb 的人类基因组插入片段。为此,我们增加了 pH 值,添加了甘油和二甲基亚砜,减少了变性时间,增加了延伸时间,并使用了具有 3'-至-5'-外切酶或“校对”活性的次级热稳定 DNA 聚合酶。我们的“长 PCR”方案通过使用较低水平的聚合酶和温度和盐条件进行特定引物退火,保持了基因组 DNA 中目标所需的特异性。扩增10-40 kb DNA序列的能力将为基因组图谱和测序带来PCR的速度和简便性,并促进分子遗传学研究。
摘要:电化学 DNA (e-DNA) 生物传感器是可行的疾病监测工具,它能够将所需核酸靶标和功能化传感器之间的杂交事件转化为可记录的电信号。这种方法提供了一种强大的样品分析方法,具有在低分析物浓度下快速产生响应的巨大潜力。在这里,我们报告了一种与 DNA 杂交相关的电化学信号放大策略,通过利用 DNA 折纸方法的可编程性来构建夹层分析来提高与目标检测相关的电荷转移电阻 (R CT )。与传统的无标记 e-DNA 生物传感器设计相比,这使传感器的检测限提高了两个数量级,并且无需探针标记或酶支持,即可在 10 pM 至 1 nM 之间的目标浓度下实现线性。此外,事实证明,这种传感器设计能够在具有挑战性的富含 DNA 的环境中实现高度的链选择性。这种方法是一种实用方法,可满足低成本即时诊断设备所必需的严格灵敏度要求。关键词:DNA 纳米技术、DNA 杂交、电化学阻抗谱、抗菌素耐药性基因、靶标选择性、灵敏度增强、即时诊断设备
来自Covid-19的供应中断大流行提出了有关全球价值链(GVC)参与的收益和成本的问题,以及供应链网络在此期间可能发生了变化的可能性。使用有关供应链联系的公司级别数据,我们通过比较大流行过程中的GVC网络图和企业的运输数据来记录大流行期间GVC的演变。此外,我们研究了这种联系如何影响股票投资者对大流行相关中断的反应。我们的发现表明,GVC在大流行爆发后收缩,并且在某些部门恢复缓慢。我们还发现,与没有这种链接的公司相比,与没有共同相关锁定的国家的GVC链接的公司遭受的股票价格损失更大。此外,部门对锁定公告的反应各不相同,强调了在GVC班次研究中考虑部门差异的必要性。
摘要:在这项工作中,提出了一种新型的MEMS振动陀螺仪的机械放大结构,目的是提高其灵敏度。该方案是使用微机械V形弹簧系统实现的,作为挠度放大机制。首先证明了该机制的有效性,用于电容式完全脱钩的四元陀螺仪。概念证明垂直轴机械放大的陀螺仪,已设计,模拟和制造365%的放大系数,并在本文中介绍了评估的结果。实验结果表明,陀螺仪的固有频率为11.67 kHz,全尺度测量范围为±400° /s,最大非线性为54.69 ppm。偏置稳定性为44.53° /h。实验结果表明,这种四边形陀螺仪的性能是将来达到导航等级的一种非常潜在的新方法。