1.1 简介 自 1951 年以来,ENDEVCO 一直是振动测量领域的领导者,并在振动传感器设计方面做出了许多贡献。其中包括:第一个能够在低温至 +750°F 的温度下连续工作的压电加速度计、第一个剪切设计加速度计和世界上最小的压电加速度计。为了支持广泛的振动传感器系列,ENDEVCO 提供了各种各样的信号调节器,包括第一个晶体管电荷放大器、第一个计算机可编程电荷放大器和第一个基于真正数字跟踪滤波器的机载振动监测系统。信号调节器 为了支持其传感器在大规模测试中的使用,ENDEVCO 开发了几代信号调节器系统。直到最近,最先进的振动实验室还由一排手动控制信号调节器组成。这些信号调节器具有手动控制的开关和旋钮,用于设置满量程范围、灵敏度和滤波器角,并且设置信息是手动记录的。计算机控制信号调节器为了消除放大器设置不正确的风险,ENDEVCO 率先提出了计算机控制信号调节器的概念。第一代是多通道放大器控制系统 (MAC)。第二代是计算机控制放大器系统 (CCAS)。CCAS 系列由五个不同的系统组成,它们使用相同的机架和带有不同模拟板的数字接口组件。这些单元通过 IEEE-488 接口总线从计算机/控制器接收设置命令,以便可以预先编程测试。此外,这些设备提供全面的自检和自校准功能,大大提高了测试数据的可靠性。用户反馈表明,这些设备通过缩短测试周期、防止重新测试和消除过度测试,很快就收回了成本。手动/计算机控制信号调节器 前两代计算机控制放大器的经验现已应用于第三代产品线:可编程桥式调节器和可编程实验室信号调节器。这些设备是独立控制的,每个设备都包含自己的电源,以确保单通道完整性。型号 136 具有手动和计算机可编程功能。这款直流放大器是 Endevco 致力于改进最先进的传感测量技术的一个例子。新一代产品体积更小,功能更多,并将继续扩展以满足日益广泛的应用需求。
电路板布局 TA2020-020 是一款功率(高电流)放大器,工作在相对较高的开关频率下。放大器的输出在驱动高电流的同时,以高速在电源电压和地之间切换。该高频数字信号通过 LC 低通滤波器,以恢复放大的音频信号。由于放大器必须驱动电感 LC 输出滤波器和扬声器负载,因此放大器输出可能被输出电感中的能量拉高至电源电压以上和地以下。为避免 TA2020-020 受到可能造成损坏的电压应力,良好的印刷电路板布局至关重要。建议在所有应用中使用 Tripath 的布局和应用电路,并且只有在仔细分析任何更改的影响后才可以偏离。下图是 Tripath TA2020-020 评估板。电路板上最关键的组件之一是电源去耦电容。如图所示,C674 和 C451 必须放置在引脚 22 和 19 的旁边。如图所示,C673 和 C451B 必须放置在引脚 25 和 28 的旁边。输出级的这些电源去耦电容不仅有助于抑制电源噪声,而且还能吸收放大器输出过冲引起的 VDD 引脚上的电压尖峰。在发生高电流开关事件(如短路)期间,输出电感器反激也可能导致电压过冲
i. 施加负栅极电压 (-8 V) 以确保所有器件均已关闭 ii. 将漏极偏压升高至约 10 V iii. 逐渐增加栅极偏压电压,同时监测漏极电流,直到达到工作电流的 20% iv. 将漏极升高至工作偏压 v. 逐渐增加栅极偏压电压,同时监测漏极电流,直到达到工作电流 e. 要安全地对 GaN 器件进行去偏压,请先对输出放大器级进行去偏压(如果适用):
AD52058是具有可调节电源限制功能的高效率立体声类音频放大器。扬声器驱动程序的操作性为4.5V〜14.4V电源电压。它可以在12V电源电压下10%THD+N以内的4扬声器传递15W/CH输出功率,并且在播放音乐时没有外部散热器。
摘要 - 本研究工作通过使用Double-Gate(DG)MOSFET的应用程序设计了AB级放大器,该研究根据其未来的设计提供了有关如何利用放大器的见解。主要考虑是在音频放大器设计中使用DG MOSFET,用于低功率和低噪声,高功率的电压调节等。这种设计的挑战是将DG MOSFET作为突出组件的尝试,以证明它是通用电子应用中的可用组件。使用DG MOSFET(用于音频放大器)的AB类放大器的模型已设计,制造并以其频率和功率特性进行了分析。 该提议的设计具有2 W rms音频放大器的典型音频频率范围为20 Hz - 20 kHz。已设计,制造并以其频率和功率特性进行了分析。该提议的设计具有2 W rms音频放大器的典型音频频率范围为20 Hz - 20 kHz。
摘要:记录具有小型单层积分放大器的神经信号在研究以及商业应用中都具有很高的兴趣,在商业应用中,通常可以并行获取100个或更多通道。本文回顾了基于CMOS技术(包括侧向双极器件)的低噪声生物医学扩增器设计的最新发展。根据其噪声效率因子(NEF),输入引用的绝对噪声,电流消耗和面积,对七个主要电路拓扑类别进行了识别和分析。观察到较低的NEF的历史趋势,而绝对噪声功率和电流消耗在超过五个数量级以上表现出广泛的趋势。通过晶体管级的模拟和从180 nm和350 nm CMOS技术制造的五个不同的原型设计进行测量,检查了侧向双极晶体管作为放大输入设备的性能。最低测量的噪声曲线为9.9 NV/√Hz,偏置电流为10 µ,导致NEF为1.2。
第四代 (4G) 无线通信已在许多国家部署。然而,由于无线移动设备和服务的增加,仍然存在一些问题,例如频谱危机。因此,第五代 (5G) 通信系统将采用除 4G 频段以外的一些不同频谱。射频功率放大器 (RFPA) 是 5G 系统的关键部件。在本文中,针对 3.3-4.3 GHz 的 5G 频段设计了一种宽带连续 F 类 (CCF) RFPA。输入和输出匹配网络采用简化实频率技术 (SRFT) 设计。使用 10W GaN CGH40010F Cree 器件,RFPA 的效率在整个频带内达到 70.7% 以上,最大值为 81.5%。输出功率和增益分别超过 40 dBm 和 10 dB。
2.2 单端 LNA 设计(共源共栅电感源极衰减) 图 1 显示了一个单端 LNA,该电路结构利用连接到源极处的晶体管 M 1 的电感 (LS )(电感源极衰减)[4]。这种结构的优点是设计人员可以通过选择适当的电感来灵活地控制输入阻抗实部的值。此外,为了减少调谐输出和调谐输入之间的相互作用,使用了级联晶体管 M 2 。偏置电路由形成电流镜的晶体管 M 1 和 M 3 实现。选择 M 3 以获得偏置电路的最小功率开销。使用电感 L d 的原因是为了与输出负载产生谐振以获得最大的输出功率传输。此外,通过设计更宽的 W 2 来权衡共源增益和增加第 2 个晶体管 (M 2 ) 的寄生电容。此外,晶体管 M 2 有助于降低米勒效应 (C gd1 ) 以及 S 21 [4]。等效电流
HOT nAILES 旨在支持多个传统数字模块化无线电 (DMR) 模拟信道以及下一代 DMR 数字接口,提供更高性能、更小尺寸、重量和功率 (SWaP) 外形尺寸以及可扩展的频率覆盖范围,从 1.5 MHz 到 3 GHz。它还能够在不同的动态功率水平以及由于长期可靠性/可支持性/可维护性、老化和温度而变化的情况下保持高性能,同时支持跳频。HOT nAILES 提供的低热足迹和热密度将因较低的结温而显着提高可靠性。HOT nAILES 的线路可更换、基于单元的架构可实现可扩展性、可复制性和低维护成本 未来
HOT nAILES 旨在支持多个传统数字模块化无线电 (DMR) 模拟信道以及下一代 DMR 数字接口,提供更高性能、更小尺寸、重量和功率 (SWaP) 外形尺寸以及可扩展的频率覆盖范围,从 1.5 MHz 到 3 GHz。它还能够在不同的动态功率水平以及由于长期可靠性/可支持性/可维护性、老化和温度而变化的情况下保持高性能,同时支持跳频。HOT nAILES 提供的低热足迹和热密度将因较低的结温而显着提高可靠性。HOT nAILES 的线路可更换、基于单元的架构可实现可扩展性、可复制性和低维护成本 未来