div>用于干涉机制的双原子元面积具有对电磁波的多维操纵的重要潜力,包括控制幅度,相位,频率和极化。具有自旋选择性特性的几何相剖面通常与波前调制有关,从而使正交圆形极化通道内的共轭策略实现了。同时控制单层双原子图中这些特征将是明显的技术扩展。在这里,通过组装一对具有双重效应的元原子来实现Terahertz(THZ)梁的自旋选择调节。具有多种旋转特性的几何相位曲线引起的不同模拟函数,引入了阐明其物理意义的非独立参数因子。通过安排关键参数,可以采用提出的策略来实现独立的振幅和相处。表征了一系列具有特定调制功能的THZ跨表面样品,在实验上证明了按需操纵的准确性。这项研究为所有可能具有巨大潜力在成像,传感和检测中具有巨大潜力的全硅元元素铺平了道路。
摘要 - 稳态视觉诱发电位(SSVEP)当前是脑部计算机界面(BCI)中使用最广泛的范例之一。尽管SSVEP-BCI的特征是它们的高且稳健的分类性能,但从用户体验的角度来看,反式刺激的重复表现是不舒服的。的确,SSVEP刺激的低水平视觉特征使它们随着时间的流逝而紧张,并且可能会破坏需要持续关注的任务。他们甚至可以诱导癫痫发作。本研究探讨了刺激幅度深度(90%的幅度降低),以设计SSVEP刺激,以改善用户舒适性的解决方案。在低振幅和标准的全幅度SSVEP刺激之间,系统比较了不同管道获得的分类精度。结果揭示了使用与任务相关的组件分析(TRCA)分类方法的高(99.8%)和低幅度(80.2%)刺激的高分类精度。目前的发现证明了减少SSVEP刺激幅度以增加用户舒适度为透明BCI操作铺平道路的有效性。
父母患有躁郁症(BD)或重度抑郁症(MDD)的后代对这些疾病的生物学风险(HR)高,鉴于其显着的遗传力。因此,研究HR-MDD和HR-BD年轻人的神经相关性对于了解情绪障碍发作之前的发展至关重要。低率波动(ALFF)和分数ALFF(Falff)的静止状态幅度显示出中度至高测试可靠性,这使其成为识别生物标志物的好工具。但是,这条途径仍未得到探索。使用健康的脑网络生物库,我们确定了150名儿童和青少年HR-MDD,50 HR-BD和150个没有任何精神疾病的风险(即对照组)。然后,我们检查了静止状态期间相对Alff/Falff信号的差异。与对照组相比,在校正后的阈值中,参与者HR-MDD在背侧尾状核中显示较低的静息ALFF信号。与对照组相比,HR-BD组在原发性运动皮层中显示出FALFF值增加。因此,在可能与重要情绪障碍,即精神运动迟缓和躁动有关的地区中注意到了牢固的差异。在未校正的阈值下,在中央孔皮层和小脑中发现了差异。数据库是一个社区引用的队列,就儿童的心理诊断和症状学而言,可能改变了结果。alff和Falff的结果,用于比较HR组与对照组重叠的,表现出良好的收敛性。需要进行更多的研究,以测量HR中的ALFF/FALFF来补充这些结果。
b'Introfuction。现代宇宙学的目标之一是曲率扰动P(K)的原始功率谱的表征。在通货膨胀期间,在辐射和物质时代的哈勃半径经典和重新输入膨胀的半径时,长波长量子波动扩增,为重力不稳定的初始种子提供了宇宙大规模结构中的初始种子。P(k)上最严格的约束来自宇宙微波背景(CMB)各向异性的表达,揭示了在范围内非常大的尺度上的近规模不变的,略带红色的频谱[0。001,0。1] mpc \ xe2 \ x88 \ x92 1。Planck DR3数据在k = 0时限制了p(k)的幅度a s。05 MPC \ XE2 \ x88 \ x92 1及其Spec-Tral索引到LN 10 10 A = 3。044 \ xc2 \ xb1 0。014和N S = 0。9649 \ xc2 \ xb1 0。0042分别为68%Cl [1]。 银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。 Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。 如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。0042分别为68%Cl [1]。银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。最近的研究表明,这种标量引起的重力波背景(SIGWB)可以为PTA检测提供一个能力的解释,并且可能会对来自贝叶斯观察的许多其他候选者进行案例[9,10](但是,请参阅[9 \ xe2 \ x80 \ x80 \ x9313],以ellite tountion of Extimation of Exteration to inton of toseation portod of tosod of tosod of to pod stod of pod,以供pbod of profod of prod。 [11 \ xe2 \ x80 \ x9316]用于替代分析)。因此,设计这一假设的进一步检验至关重要,并且与cos-'
摘要 — 本文介绍了一种基于纯幅度数据的便携式天线诊断和特性分析系统。通过在被测天线 (AUT) 孔径前移动由运动捕捉系统跟踪的手持式探头来获取纯幅度样本。使用无相位源重构方法处理获取的测量值,以计算 AUT 孔径上的等效电流分布。最后,通过评估相应的辐射积分可以获得 AUT 的辐射图。与以前的工作不同,使用纯幅度数据避免了对相位参考的需求,为在操作条件下诊断和特性分析天线铺平了道路。这一事实,加上手持功能,使该系统非常方便测量已部署和机载天线。此外,这些纯幅度采集还简化了所需的硬件。该系统已通过从 Ka 波段到 300 GHz 的宽频率范围的测量得到验证。尽管不能期望达到与实验室条件下(包括无回声环境和高精度定位器)相同的精度,但该系统表现出了出色的故障检测能力,例如错误的幅度/相位分布,以及对远场的合理估计。
编辑:Hubert Saleur 我们研究在配备 Fubini-Study 度量的 Bloch 球面上连接任意源状态和目标状态的时间最优和时间次优量子哈密顿演化的复杂性。这项研究分多个步骤进行。首先,我们通过路径长度、测地线效率、速度效率和连接源状态和目标状态的相应动态轨迹的曲率系数来描述每个幺正薛定谔量子演化。其次,从经典的概率设置开始,在仅对系统物理有部分了解的情况下,可以使用所谓的信息几何复杂性来描述弯曲统计流形上熵运动的复杂性,然后我们过渡到确定性量子设置。在这种情况下,在提出量子演化的复杂性定义之后,我们提出了量子复杂性长度尺度的概念。具体来说,我们讨论了这两个量的物理意义,即布洛赫球面上指定从源状态到目标状态的量子力学演化的区域的可访问(即部分)和可访问(即全部)参数体积。第三,在计算了两个量子演化的复杂性测量和复杂性长度尺度之后,我们将我们的测量行为与路径长度、测地线效率、速度效率和曲率系数的行为进行比较。我们发现,一般来说,高效的量子演化比低效的演化复杂度要低。然而,我们还观察到复杂性不仅仅是长度。事实上,弯曲程度足够的长路径可以表现出比曲率系数较小的短路径更简单的行为。
研究表明,皮质信号可以追踪连续语音的声学和语言特性。这种现象在儿童和成人中都有测量,反映了成人的语音理解能力以及注意力和预测等认知功能。此外,在患有语音困难(发育性阅读障碍)的儿童中也发现了非典型的低频皮质语音追踪。因此,低频皮质信号可能在语言习得中发挥关键作用。Attaheri 等人(2022 年)[1] 最近对婴儿进行了一项研究,探究了 4、7 和 11 个月大婴儿在听歌唱时的皮质追踪机制。时间响应函数 (TRF)、相位-幅度耦合 (PAC) 和动态 θ-δ 功率 (PSD) 分析的结果表明 delta 和 θ 神经信号的语音包络追踪和刺激相关功率 (PSD)。此外,在所有年龄段都发现了由 delta 和 theta 驱动的 PAC,其中 theta 阶段表现出比 delta 更强的 PAC 和高频振幅。本研究测试这些先前的发现是否在参与这项纵向研究的整个婴儿队列(N = 122)的后半部分中得到重复(前半部分:N = 61,(1);后半部分:N = 61)。除了展示良好的复制效果之外,我们还使用婴儿主导和父母估计的测量方法以及多变量和单变量分析来调查生命第一年的皮质追踪是否可以预测整个队列(招募的 122 名婴儿,保留的 113 名)以后的语言习得。单变量分析中 delta 皮质追踪的增加、~2Hz PSD 功率的增加和多变量和单变量分析中更强的 theta-gamma PAC 与更好的语言结果相关(使用婴儿主导和父母估计的测量方法)。相比之下,多变量分析中~4Hz PSD 功率的增加、delta-beta PAC 的增加以及多变量分析中更高的 theta/delta 功率比与语言能力下降有关
通过电气调整,电动频率波的振幅的主动操纵是下一代THZ成像的关键,对于解锁战略应用至关重要,从无线通信到量子技术。在这里,我们基于电源门控单层石墨烯演示了高性能THZ振幅调节剂。通过仔细控制四分之一波长腔结构中的间隔厚度,通过优化电场耦合来实现1.5 - 6 THZ范围内的宽带调制,最大调制深度在2 THz左右。拉曼表征通过石墨烯的电解质门控为0.39 eV的费米级调整。然后开发和测试具有独立控制亚毫米区域的测试2 2调节器阵列,像素之间没有串扰。报告的结果突出了电解石墨烯对有效THZ调制的潜力。单芯片设计可与其他电子组件相结合,并易于集成,使其成为THZ空间光调节器和自适应光学组件的有前途的平台。
通过电气调整,电动频率波的振幅的主动操纵是下一代THZ成像的关键,对于解锁战略应用至关重要,从无线通信到量子技术。在这里,我们基于电源门控单层石墨烯演示了高性能THZ振幅调节剂。通过仔细控制四分之一波长腔结构中的间隔厚度,通过优化电场耦合来实现1.5 - 6 THZ范围内的宽带调制,最大调制深度在2 THz左右。拉曼表征通过石墨烯的电解质门控为0.39 eV的费米级调整。然后开发和测试具有独立控制亚毫米区域的测试2 2调节器阵列,像素之间没有串扰。报告的结果突出了电解石墨烯对有效THZ调制的潜力。单芯片设计可与其他电子组件相结合,并易于集成,使其成为THZ空间光调节器和自适应光学组件的有前途的平台。