背景。近几十年来,人们对太阳日珥中的大振幅纵向振荡 (LALO) 进行了广泛的研究。然而,它们的衰减和放大机制尚不清楚。目的。在本研究中,我们使用高分辨率数值模拟研究了 LALO 的衰减和放大,空间分辨率逐渐提高。方法。我们使用包含倾角区域的二维磁配置对 LALO 进行了时间相关的数值模拟。在磁倾角中加载日珥质量后,我们通过沿磁场扰动日珥质量来触发 LALO。我们使用四个空间分辨率值进行了实验。结果。在分辨率最高的模拟中,周期与摆模型非常吻合。收敛实验表明,随着分辨率的提高,阻尼时间在底部日珥区域达到饱和,这表明振荡衰减存在物理原因。在日冕顶部,振荡在最初几分钟内被放大,然后缓慢衰减。特征时间表明在具有最高空间分辨率的实验中放大更显著。分析表明,底部和顶部日冕区域之间的能量交换是导致 LALO 衰减和放大的原因。结论。高分辨率实验在研究 LALO 的周期和阻尼机制时至关重要。只有使用足够高的空间分辨率时,周期才与摆模型一致。结果表明,在空间分辨率不足的模拟中,数值扩散可能会隐藏重要的物理机制,例如振荡放大。
图3。许多正弦波构建了信号的频域表示。上排:时间域信号。下排:这些信号转换为频域。a)周期性正弦波在频域中以单个频率表示。b)周期性方波(厚,黑线)用许多特定的谐波频率(在顶部和底部底板上相应颜色的线)表示。从字面上看,这些(和更高的,未说明)的彩色线的总和在每个时间点都重建原始信号。c)与许多非特异性频率的组合表示非周期性的事件相关电位(ERP)信号(Retter等人,2020年的数据)。注意频域信号的几个属性:1)0频率bin反映了信号的平均幅度(DC偏移); 2)X轴分辨率是信号记录持续时间的倒数; 3)
水凝胶基质的粘弹性对3D培养和生物制作组织模型系统的细胞行为敏感。先前的报道表明,在具有明显的压力松弛的水凝胶中,细胞倾向于粘附,扩散,迁移和增殖。然而,目前尚不清楚细胞是否对压力松弛的振幅更为敏感,或者对放松时间常数的反应。为了测试这一点,我们比较了在藻酸盐中最多10天培养的成纤维细胞的行为,并氧化了具有相似杨氏模量的藻酸盐水凝胶,但应力放松行为不同。我们发现成纤维细胞在水凝胶中细长,迁移和增殖更好,这些水凝胶显示出更高的应力松弛幅度。相比之下,细胞对松弛时间常数的响应不太明显且不一致。在一起,这些数据表明,最重要的是基质的应力松弛幅度,该矩阵决定了细胞局部穿透和重塑矩阵的能力,随后会导致更好的扩散,更快的迁移和更高的细胞增殖。我们得出的结论是,应力松弛振幅是用于优化3-D水凝胶中细胞行为的中心设计参数。
高能粒子碰撞测量的解释在很大程度上依赖于完整事件发生器的性能,其中包括计算硬过程和随后的部分子簇射步骤。随着量子设备的不断改进,需要专用算法来挖掘计算机可以提供的潜在量子。我们提出了用于量子门计算机的通用和可扩展算法,以促进螺旋度振幅和部分子簇射过程的计算。螺旋度振幅计算利用旋量和量子比特之间的等价性以及量子计算机的独特功能来同时计算所涉及的每个粒子的螺旋度,从而充分利用计算的量子性质。通过同时计算 2 → 2 过程的 s 和 t 通道振幅,进一步利用了相对于传统计算机的这一优势。部分子簇射算法模拟了两步离散部分子簇射的共线发射。与经典实现相比,量子算法为整个部分子簇射过程构建了一个具有所有簇射历史叠加的波函数,从而无需明确跟踪单个簇射历史。这两种算法都利用了量子计算机在整个计算过程中保持量子态的能力,代表了描述 LHC 完整碰撞事件的量子计算算法的第一步。
科学界正在探索脑电图 (EEG) 与个人信息之间的关联。尽管使用 EEG 进行身份识别对研究人员来说很有吸引力,但是感知的复杂性限制了此类技术在实际应用中的使用。在这项研究中,通过降低脑信号采集和分析过程的复杂性解决了这一难题。这是通过减少电极数量来实现的,在不影响准确性的情况下简化了关键任务。事件相关电位 (ERP),又称时间锁定刺激,用于从每个受试者的头部收集数据。在放松一段时间后,向每个受试者直观地呈现一个随机的四位数字,然后要求他们思考 10 秒。对每个受试者进行了 15 次试验,在每个心理回忆片段之前都有放松和视觉刺激阶段。我们引入了一个新颖的派生特征,称为半球间振幅比 (IHAR),它表示横向对应电极对的振幅比。该特征是在使用信号增强技术扩展训练集后提取的,并使用多种机器学习 (ML) 算法进行测试,包括线性判别分析 (LDA)、支持向量机 (SVM) 和 k-最近邻 (kNN)。大多数 ML 算法在 14 个电极的情况下显示 100% 的准确率,根据我们的结果,使用更少的电极也可以实现完美的准确率。然而,AF3、AF4、F7 和 F8 电极组合与 kNN 分类器产生了 99.0 ± 0.8% 的测试准确率,是人员识别的最佳选择,既保持了用户友好性又保持了性能。令人惊讶的是,放松阶段表现出三个阶段中最高的准确率。
目的:在出现明显的脑磁共振成像 (MRI) 铁沉积发现之前对 β-螺旋桨蛋白相关神经变性 (BPAN) 进行早期诊断仍然具有挑战性。本研究检查了 BPAN 儿童在脑电图 (EEG) 上是否具有特征性的高振幅 (>50 l V) 快速活动 (HAFA)。方法:我们对 5 名 BPAN 患者儿童期进行的脑电图进行了回顾性分析。我们还检查了 59 名患有不同病因的患者的 143 份脑电图,包括癫痫 (n = 33)、急性脑病 (n = 6)、神经发育障碍 (n = 5)、非癫痫事件 (n = 4) 和其他 (n = 11)。训练有素的脑电图师审查了所有脑电图。当观察到过度的快速活动时,评估幅度、频率和局部性。结果:5 名 BPAN 患者均在 12-21 个月大时接受了初始脑电图检查,在清醒和睡眠脑电图上均观察到弥漫性连续 HAFA(范围为 20-50 Hz)。在清醒记录中,5 名患者中有 4 名没有明显的后部优势节律。虽然 143 个脑电图中有 28% 有持续过度快速活动,主要在睡眠记录中,但只有两个(1.4%)在睡眠时表现出 HAFA,他们的清醒脑电图具有明显的后部优势节律。结论:BPAN 儿童的脑电图在清醒和睡眠时均显示持续弥漫性 HAFA,这在其他病因儿童中并不常见。意义:本研究为 BPAN 的早期诊断提供了重要线索。2020 年国际临床神经生理学联合会。由 Elsevier BV 出版,保留所有权利。
恒定载荷幅值的试验用于表征材料试样和部件的疲劳强度行为。从这些试验结果得出的 S-N 曲线描述了载荷幅值与相应的失效循环次数之间的关系。由于实施和评估疲劳试验的概念不同,因此很难比较不同研究机构的结果。新版德国标准 DIN 50100:2016 的目的是定义一种确定金属合金 S-N 曲线的程序,该程序不允许任何解释的余地。假设试验结果在载荷和循环方向上都服从对数正态分布。进一步假设高周疲劳状态和长寿命疲劳状态下的 S-N 曲线可以用双线性函数近似。为了确定有限寿命直线,可以根据 Basquin 采用珍珠串法和载荷水平法确定位置参数和幂函数的斜率。长寿命疲劳强度采用阶梯法确定,平均而言,S-N 曲线的拐点与有限寿命直线形成。对于长寿命疲劳状态,根据所检查的材料组,假设水平过程或低倾斜度下降。此外,DIN 50100:2016 包含有关平均值估计准确性的信息