3D创新有限公司 ACH2技术有限公司 ActesKyosan inc. Adacotech 公司 艾迪斯泰克公司 先进传播媒体股份有限公司 AEMtec 公司 AGC公司 安捷伦科技日本有限公司 AIM 有限公司 愛賽株式会社 株式会社AISTHESIS AkiTech LEO 公司 深圳市阿尔法电子有限公司 ALXIS DATA 公司 天草光学株式会社 阿美特克有限公司 AMPLITUDE 日本公司 Ansys Japan KK (Zemax Japan) Aptus 公司 Archer OpTx 公司 ARTRAY 股份有限公司 朝日橡胶股份有限公司 创新光学技术协会 雅士达 奥特克斯有限公司AVAL 数据公司 绫濑株式会社 贝内克公司 百思特传媒 BITRAN 公司 书展 文光惠器株式会社 金丝雀电气有限公司
图3:随着年龄的增长:(a)脑图通过左运动皮层显示切片,并在标准大脑上覆盖了β调制(蓝色/绿色)的伪-T统计图。为每个亚组指示峰值MNI坐标。时间频谱图显示了神经振荡振幅的调节(光谱幅度的分数变化相对于2.5-3 s窗口中测得的基线)。垂直线表示第一个盲文刺激的时间。在所有情况下,从峰值beta denngonisation(在左感觉运动皮层)的位置中提取结果。请注意刺激过程中明显的β幅度降低。插图线图显示了4-40 Hz试验平均的相锁诱发响应,预期的突出偏转在20和50 ms左右。 (b)绘制的beta波段振幅(0.3-0.8 s窗口与1-1.5 s窗口)的最大差异绘制为年龄的函数(即,每个数据点显示了一个不同的参与者;三角形代表孩子,圈子代表成人)。注意显着相关(𝑅2= 0.29,𝑝= 0.00004 *)。(c)绘制的诱发响应的P50分量的幅度绘制为年龄。没有显着相关性(𝑅2= 0.04,𝑝= 0.14)。这里的所有数据都与食指刺激有关;相似的结果可用于补充信息第1节中的小指刺激。
摘要 规划和执行运动行为需要大脑多个皮层和皮层下区域协调神经活动。高伽马波段振幅与低频振荡(θ、α、β)相位之间的相位 - 振幅耦合已被提出来反映神经通信,低伽马振荡的同步也是如此。然而,低伽马波段和高伽马波段之间的耦合尚未得到研究。在这里,我们测量了执行伸手任务的猴子和执行手指屈曲或读词任务的人类的低伽马和高伽马之间的相位 - 振幅耦合。我们发现在所有任务期间,两个物种的多个感觉运动和运动前皮层中都存在低伽马相位和高伽马振幅之间的显著耦合。这种耦合随着运动的开始而变化。这些发现表明,低伽马波段和高伽马波段之间的相互作用是与运动和言语生成相关的网络动态的标志。
曲线)。相关的声感应电压信号显示为绿点,即所谓的 AE 命中。每个命中的峰值幅度以 dB AE 为单位绘制(参考值 1 μV)。在给定的示例中,时间相关的力曲线在接触力高达约 230 mN 时是非线性的,同时在阈值电压 U th 23 dB AE 以上测量到大量 AE 命中。这种影响是由于压头随着接触载荷的增加而穿透 Al-Cu 顶层,该顶层发生塑性变形并且压痕深度不断增加(见图 7a)。AE 命中的数量及其峰值幅度随着穿透深度的增加而减少。在接触力超过 230 mN 时,只会发生孤立的低幅度命中。在 Al-Cu 顶层上压痕时 SiO x 层开始开裂,接触力 F c 为 367 mN,峰值幅度 A peak 为 55.9 dB AE 。图 6b 绘制了裂纹诱发的 AE 冲击的示例性波信号及其整个信号持续时间。[1]
曲线)。相关的声引起的电压信号显示为绿色点,即所谓的AE命中。在DB AE中绘制每个命中的峰值振幅(参考值1μV)。在给定的示例中,时间依赖性力曲线是非线性的,直至约为230 mn的接触力,而同时将许多AE命中率显示在23 dB ae的阈值电压上。这种效果是由于凹痕渗透到Al-Cu顶层的升高而渗透到质量变形的,凹痕深度正在增加的事实引起的(见图7a)。AE命中的数量及其峰值幅度与渗透深度增加成正比。在230 mn的接触力上方仅出现低振幅的孤立命中。在Al-Cu顶层的压痕上,SIO X层的破裂始于367 MN的接触力F C,峰值A峰为55.9 dB AE。在图中绘制了裂纹引起的AE命中的示例性波信号。6B,在整个信号持续时间内。[1]
频率调制 (FM)。图 3a 中的框图描述了振幅和相位检测以及 FM 模式。在振幅和相位检测模式下,LiftMode 扫描期间没有反馈;即,使悬臂振荡的驱动信号具有恒定频率。通过绘制悬臂的相位或振幅与平面坐标的关系,可以生成 3-D EFM 图像。在 FM 模式下,悬臂振荡的相位是相对于高分辨率振荡器的驱动信号的相位来测量的。相位差用作反馈方案中的误差信号;即,驱动信号的频率被调制(图 3a 中的“频率控制线”),以使悬臂振荡相对于驱动信号保持恒定相位。然后绘制驱动信号频率的调制与平面坐标的关系,从而创建 3-D EFM 图像。
这个新颖的界面具有振荡器和桥梁的良好特征:它很简单,并且具有彼此独立的输出信号频率和振幅,就像放松振荡器一样。在频率中而不是在振幅中,对电磁干扰的免疫力增加。由于其不同的性质,该界面允许与桥电路相似的函数。此外,频率以与谐波振荡器的振幅相似的方式理想地增加到无穷大。渐近线的位置与k的值无关,但可以通过调整r t,c l和r3来移动。通过在高频上工作,传感器也可以非常敏感,即使对于具有较大RE的线圈,例如平坦或微型卷曲的线圈。
•五点企业•88GB•Accelia Capital•Accenture•ACE企业合作伙伴•行动潜在风险投资资本•北向北•Alleycorp North•Amplitude capital•振幅企业•Quebec•Quebec•Apertu Capital•AQC Capital•AQC Capital•ARUP•ARUP•ARUP•ARPERX QUEBECOR•AXA NET PONTURE•AXA VENTURE•AXA ventuner•Axa ventuns•Bud bd bd bd bcf•BCF•BCF•BCF•BCF•BCF•BCF, • BDG & Associés • Beangels • Bloomwest Capital • Blue Vision Capital • Boreal Ventures • Borex Capital • Boys Venture • Boxone Ventures • Bregal Sagemount • Brightspark Ventures • Bsquared Capital • Quebec deposit and placement fund • • Citizens Private Bank • CMD Capital • Coppice Capital • Crédit Mutuel Equity • Cybernetix Ventures • Capital cycle • Davita • DELFINUS LLP•Deloitte•Desjardins
表 1:研究中考虑的功能连接指标 FC 指标缩写类别参考瞬时相干性瞬时频谱相干性[31]虚相干性 ImCoh 频谱相干性[32]锁相值 PLV 相位估计[33]相位滞后指数 PLI 相位估计[34]平方 wPLI 的去偏估计量 wPLI2-d 相位估计[35]幅度包络耦合 AEC 幅度耦合[36、37]
图S1。 通过正弦脉冲类似阳极氧化的NaA – GIF制造。 a)代表性的全输入正弦电流密度曲线(黑色实线)和代表性的全输出正弦电压曲线(红色实线)。 初始部分中电压曲线向更高的电压值的轻微偏差与纳米孔的不均匀生长有关,从光滑的表面开始。 b) Magnified view (down left in blue dash line) of one period at the beginning of the electrochemical process with graphical definition of input anodization parameters: J max – current density amplitude, J average – current density average, T – anodization period and the output parameters in voltage profile: V average – average voltage during the anodization process, V max – output voltage amplitude. 当输入阳极氧化电流发生变化时,由于电流恢复过程缓慢而导致的输入电流密度曲线和电压轮廓之间存在时间延迟; c)放大了代表性输入和输出正弦电流密度和电压曲线(在黄色仪表线中向下),其图形定义是在制造电化学过程结束时参数的图形定义。图S1。通过正弦脉冲类似阳极氧化的NaA – GIF制造。a)代表性的全输入正弦电流密度曲线(黑色实线)和代表性的全输出正弦电压曲线(红色实线)。初始部分中电压曲线向更高的电压值的轻微偏差与纳米孔的不均匀生长有关,从光滑的表面开始。b) Magnified view (down left in blue dash line) of one period at the beginning of the electrochemical process with graphical definition of input anodization parameters: J max – current density amplitude, J average – current density average, T – anodization period and the output parameters in voltage profile: V average – average voltage during the anodization process, V max – output voltage amplitude.当输入阳极氧化电流发生变化时,由于电流恢复过程缓慢而导致的输入电流密度曲线和电压轮廓之间存在时间延迟; c)放大了代表性输入和输出正弦电流密度和电压曲线(在黄色仪表线中向下),其图形定义是在制造电化学过程结束时参数的图形定义。