NASP 解决方案使用迁移学习的原理,其中负责原始数据预处理的神经网络的大多数层(1)在一定数量的训练周期后保持不变(固定模拟核心),并且只有最后几层(2)在接收新数据和重新训练时进行更新(灵活数字核心)。
量子计算已承诺在我们解决经典问题的计算能力方面有前所未有的改进。尽管量子硬件的迅速开发[2,66],但近任期量子计算机仍可能具有非常有限的硬件资源,在这种情况下,“ Qubits”数量有限,而不可忽略的机器Noises会阻碍大型量子量算法的实施。最近的研究结果[60]和Physics [43]提出了一种设计资源噪声噪声中间尺度量子(NISQ)[51]应用的有希望的方法[51]通过破坏量子电路抽象并直接设计量子机脉冲控制的应用程序。1在经典模拟计算的历史史上,这种面向模拟方法的好处是由于轻松的硬件要求而早于数字计算的历史,并且在诸如模拟之类的域应用中起着重要作用。
在磁性中,skyrmion 对应于经典的三维自旋纹理,其特征是拓扑不变量,该不变量跟踪实空间中磁化的卷绕,这一属性不易推广到量子情况,因为量子自旋的方向通常定义不明确。此外,正如我们所表明的,在探测系统局部磁化的现代实验中,无法直接观察到量子 skyrmion 状态。然而,我们表明,这种新的量子态仍然可以通过在相邻晶格点上定义的特殊局部三自旋关联函数(标量手性)来识别和完全表征,这可以简化为大型系统的经典拓扑不变量,并且已被证明在量子 skyrmion 相中几乎是恒定的。
本文首先对开关配置中的 MOS 器件进行了深入研究。然后分析了改进的开关架构,以便更好地将它们集成到复杂的应用中 [4-8]。强调了使用串行接口进行数字控制的模拟开关的优势。具体来说,我们专注于由数字控制块启用或禁用的多通道开关的设计。展示了为实现而设计的内部结构、主要电气参数和布局。这些架构的验证是通过数字和晶体管级模拟、静态时间分析和噪声研究完成的。我们将在一个 8 通道系统上介绍当前的结果,该系统的工作频率从 2.5 MHz [6] 增加到 55 MHz 时钟信号,与逻辑电平的偏差很小 [7]。
《模拟电路与信号处理》丛书,前身为《Kluwer 国际工程与计算机科学丛书》,是一套高水准的学术专业丛书,出版有关模拟集成电路和信号处理电路与系统的设计和应用的研究成果。通常每年我们会出版 5-15 本研究专著、专业书籍、手册和编辑本段,分发给世界各地的工程师、研究人员、教育工作者和图书馆。该丛书促进并加快了模拟领域新研究成果和教程观点的传播。全球范围内,该领域开展着大量令人兴奋的研究活动。研究人员正努力通过改进模拟功能来弥合传统模拟工作与超大规模集成 (VLSI) 技术的最新进展之间的差距。模拟 VLSI 已被公认为未来信息处理的主要技术。模拟工作正在显示出巨大变化的迹象,重点是结合设备/电路/技术问题的跨学科研究工作。因此,新的设计概念、策略和设计工具正在被揭示。感兴趣的主题包括:模拟接口电路和系统;数据转换器;有源 RC、开关电容和连续时间集成滤波器;混合模拟/数字 VLSI;仿真和建模、混合模式仿真;模拟非线性和计算电路和信号处理;模拟神经网络/人工智能;电流模式信号处理;计算机辅助设计 (CAD) 工具;新兴技术中的模拟设计 (可扩展 CMOS、BiCMOS、GaAs、异质结和浮栅技术等);模拟测试设计;集成传感器和执行器;模拟设计自动化/基于知识的系统;模拟 VLSI 单元库;模拟产品开发;射频前端、无线通信和微波电路;模拟行为建模、模拟 HDL。
第三步是人为错误识别,人为错误可能发生,从而可能对危险事件产生影响。系统内的人为行为可以分解为认知反应(即未能正确解释信息)或物理行为。系统设计(例如,机组人员的居住环境)会影响人类操作员正确执行任务的概率。因此,评估 PSF(即绩效塑造因素)非常重要,它是任何可能影响人员执行任何任务的能力的因素。外部 PSF 不受个人控制。内部 PSF 是可能受技能、疲劳等影响的人为属性。一旦识别出 PSF,就可以确定它们的影响,以便调整错误率。但是,即使可以调查可能发生人为错误的最可信情况,也不可能列出任务中可能发生的所有可能情况和错误。最后,每种类型的日志记录(例如,因果树记录)都可能有用 [11]。
我们通过将POTTS模型扩展到包括真实和合成空间中邻近的原子之间的相互作用并研究其效能特性的原子之间的相互作用来引入超声分子合成或rydberg原子合成维度的量子物质类似物。对于J 1的中间值,所得阶段和相图与时钟和小人模型的相似,其中三个阶段出现。有一个类似于高温无序相和低温铁磁相之间量子合成维度模型的板相。我们还使用机器学习来使用混淆方法学习相图的非平凡特征,该方法能够辨别出几种连续的相变。
ana pires是INESC TEC机器人和自主系统中心的研究人员。她参与了几个可持续的海/海洋矿业项目,地理技术,地理工程和地理资源。她的研究集中在太空收互作用,太空资源,太空采矿,岩土技术,地球物理学以及用于太空探索的地质技术或地质机器人的发展。她还是第一位在NASA的飞行机会支持的“上层中极地科学”项目下成功完成科学家 - 占地计划的葡萄牙女性。ana Pires热衷于探索极端环境,并且是Explorers Club的同伴。她是专家潜水员(SSI认证),她是“ Pegasus”团队的船员科学家(Crew 281),于2023年5月在Mars Deserts Research Station(MDRS)(MDRS)进行了为期2周的模拟任务,该任务位于犹他州(美国)(美国),拥有并由火星社会运营。自2018年以来,她一直在努力促进葡萄牙的人类太空飞行,天文地质学,技术,机器人技术和蒸汽外展活动。她是卡姆斯项目(Caving Analog Mission:Ocean,Earth and Space)项目的领导人和指挥官,这是2023年11月的Terceira岛(Azores地区)的第一个月球模拟任务。
与光学工作并行,Engheta正在使用较低频率的原理设备来推动模拟计算机的数学能力。小组的最新结果添加了一个重要的新功能:重新配置性 - 方程求解器可以重新编程以执行不同数学的能力。该方案由5×5的射频(45-MHz)元素(例如放大器和相移)组成。可以通过控制每个元素的参数来重新配置该设备。作为演示,研究人员的机器解决了两个不同的问题:找到多项式系统的根并执行元结构的逆设计。这两个问题都是非组织的,也就是说,他们需要在每个步骤中具有不同数学操作的一系列步骤。
每个学生必须诚实地追求自己的学术目标,并对所有提交的作品承担个人责任。将他人的作品视为自己的作品永远是错误的。任何涉嫌学术不诚实的情况都将被报告给学术司法机构。有关学术诚信的更多综合信息,包括学术不诚实的类别,请参阅学术司法网站 http://www.stonybrook.edu/uaa/academicjudiciary/ 如果您有身体、心理、医疗或学习障碍,可能会影响您的课程作业,请致电 (631) 632-6748 联系学生无障碍支持中心(教育通信中心大楼,128 室)。