一种学习率可靠和可靠的Tiox回忆录阵列,可用于稳健,快速,准确的神经形态计算,高级科学(2022)一种具有RRAM Crossbar阵列和随机神经元的硬件和能源有效的在线学习神经网络,具有对工业性电子构造的功能,具有良好的工业单位(2020)(202020)Wox wox Networks, IEEE Transactions on Nanotechnology (2020) A Compressive Sensing CMOS Image Sensor with Partition Sampling Technique, IEEE Transactions on Industrial Electronics (2020) An On-Chip Binary-Weight Convolution CMOS Image Sensor for Neural Networks, IEEE Transactions on Industrial Electronics (2020) A Power and Area Efficient CMOS Stochastic Neuron for使用电阻横梁阵列的神经网络,生物医学电路和系统的IEEE交易(2019年)基于Memristor跨BAR阵列的神经网络,IEEE Transactions,电子设备上的IEEE Transactions(2019)
神经形态计算最近已成为传统的von Neumann计算机范式的潜在替代方法,该范式由于其建筑瓶颈而固有地受到限制。因此,需要新的人工组件和用于脑启发的计算硬件实现的架构。双极模拟熟悉设备,其电阻(或电导)可以连续调节(作为突触重量),是人工突触应用的潜在候选者。在这项工作中,混合离子电子导电氧化物(La 2 NiO 4+δ,L2NO4)与TIN和PT电极结合使用。TIN/L2NO4/PT设备显示双极电阻开关,以及用于集合和复位过程的逐渐过渡。电阻(电导)可以通过脉冲幅度和持续时间逐渐调节,显示出良好的数据保留特征。通过实验测量电阻变化和总应用脉冲持续时间之间的线性关系。此外,突触抑郁和增强特征是生物共生的重要功能之一,是为这些设备人为复制的,然后在尖峰神经网络环境中进行了建模并成功测试。这些结果表明使用TIN/L2NO4/PT回忆设备作为神经形态计算中的长期人造突触的适用性。
特性................................................................1 应用................................................................1 功能框图..............................................................1 概述..............................................................................1 规格..............................................................................3 数字输出................................................................3 SPI 特性..............................................................4 I 2 C 数字接口特性....................................5 绝对最大额定值......................................................7 热阻......................................................................7 静电放电 (ESD) 额定值....................................7 ESD 警告......................................................................7 引脚配置和功能描述....................................8 典型性能特性......................................................9 工作原理................................................................13 应用信息................................................................14 数字输出................................................................14 加速度灵敏度轴................................................14 电源排序..............................................................14 电源描述..............................................................14 超量程保护..............................................................14 自检..............................................................................15 滤波器................................................................15 串行通信..............................................................18 SPI 协议..............................................................18 I 2 C 协议..............................................................19 从接口读取加速度或温度数据.............................................................. 19 FIFO................................................................... 21 中断................................................................... 22 DATA_RDY.......................................................22 DRDY 引脚..............................................................22 FIFO_FULL....................................................... 22 FIFO_OVR............................................................... 22 活动......................................................................22 NVM_BUSY......................................................22
摘要 为 CDC 1604 数字计算机编写了一个模拟大型电子模拟计算机的数字计算机程序。除了提供许多在电子模拟计算机中很少见的非线性计算元素外,该程序还接受输入数据,其形式可以直接从框图或模拟计算机接线图中写下来。使用数字绘图仪可以以绘制的曲线形式获得图形输出。输入语言的简单性使没有数字计算机经验的人也可以轻松使用该程序。这个数字计算机程序称为 DYSAC,是数字模拟计算机的缩写,实际上是一个完整的编程系统,并且与 FORTRAN 一样,它具有一种特殊的语言来方便使用。
家庭作业问题将来自本文。 3)我将大量使用自己的课堂笔记 讲师 Ahmed Helmy,教员助理,ahmed.helmy@asu.edu 每节课后的办公时间,也可根据需要 Zoom 会议 课程目标:模拟电路、模拟电子器件的设计、分析、模拟和测试,重点是集成电路设计,包括主题:直流偏置、运算放大器。实验室将专注于设计运算放大器。设计、分析和模拟将使用 CADENCE 完成。学生将模拟和布局电路。 课程成果:模拟电路、模拟电子器件的设计、分析、模拟和测试,重点是集成电路设计,包括主题:直流偏置、运算放大器。用于模拟实验室和家庭作业问题的 Cadence。课程主题:1. 简介 2. MOSFET 晶体管 3. 波特图和 dB 4. 集成共源放大器 5. 共源共栅放大器、缓冲器和镜像 6. 差分对放大器 7. 高带宽 CMOS 运算放大器设计 8. CMOS 运算放大器设计示例 9. 反馈放大器 10. 噪声基础知识 11. 模拟 IC 设计规则和布局
BioMEMS 组,IEMN(UMR 8520 - 法国里尔北部大学)*BP 60069,Avenue Poincaré,59652 Villeneuve d'Ascq cedex,法国 – vincent.senez@isen.fr 摘要:本文介绍了一种使用无源阀门的模拟数字微流体转换器 (ADMC),能够将连续液体流转换为液滴,以实现介电电润湿 (EWOD) 驱动。使用 COMSOL Multiphysics 的微流体应用模式优化了阀门校准、几何特性和损耗减少。关键词:EWOD、片上实验室、微流体。1. 简介微流体装置可以处理微量液体,无论是微通道中的连续流还是疏水表面上的液滴。到目前为止,大多数片上实验室 (LOC) 只采用这两种技术中的一种实现。然而,通过与微电子系统类比,人们很容易理解,根据操作的不同,这两种技术都有各自的优点和缺点。因此,必须研究能够将连续流转换为液滴,反过来,能够将液滴转换为连续流的系统。借助使用 COMSOL Multiphysics 的数值模拟,我们设计了一个模拟(连续流)到数字(液滴位移)微流体转换器 (ADMC)。本文的第二部分介绍了数值模型及其校准,第三部分专门介绍 ADMC 的设计和模拟分析。
Analogmuseum.org › 图书馆 › 设计... PDF 2018 年 9 月 27 日 — 2018 年 9 月 27 日 飞机,除了计算机 (c) 1966 由利兰董事会......良好的人类工程学。必须考虑空气流动...
1.AD9648 采用单个 1.8 V 模拟电源供电,并具有单独的数字输出驱动器电源,以适应 1.8 V CMOS 或 LVDS 逻辑系列。2.获得专利的采样保持电路在高达 200 MHz 的输入频率下仍能保持出色的性能,并且专为低成本、低功耗和易用性而设计。3.标准串行端口接口支持各种产品特性和功能,例如数据输出格式、内部时钟分频器、关断、DCO/数据时序和偏移调整。4.AD9648 采用符合 RoHS 标准的 64 引脚 LFCSP 封装,该封装与 AD9650 / AD9269 / AD9268 16 位 ADC、AD9258 14 位 ADC、AD9628 / AD9231 12 位 ADC 和 AD9608 / AD9204 10 位 ADC 引脚兼容,从而实现了 10 位和 16 位转换器之间的简单迁移路径,采样率为 20 MSPS 至 125 MSPS。
表 2 详细列出了 DO-160G 第 22 节雷电感应瞬变敏感度标准中针对引脚注入测试的波形 3、波形 4/波形 1 和波形 5A 所规定的开路电压 (V OC ) 和短路电流 (I SC )。DO-160G 4 级测试的峰值电流远大于标准工业浪涌 IEC 61000-4-5 峰值电流。DO-160G 标准的波形形状和上升/衰减时间明显长于 IEC 61000-4-5 标准所规定的波形形状和上升/衰减时间,如图 2 所示。由于 DO-160G 第 22 节雷电标准涉及大量能量,因此使用外部 33 Ω 或 47 Ω A 引脚和 B 引脚总线限流电阻对 ADM2795E-EP 进行测试,以测试至 GND 2 。除了 ADM2795E-EP 集成 EMC 保护电路外,还需要这些电阻。但是,当测试到 GND 1 时,不需要限流电阻。ADM2795E-EP i 耦合器隔离技术可在出现这些极端瞬变时保护设备。
是一个由公民和利益相关者组成的联盟,致力于支持为菲律宾带来更好宽带服务的举措。他们设想菲律宾的每个人都可以随时随地使用任何技术获得可靠且价格合理的宽带服务。BBA 合作伙伴包括互联网协会 - 菲律宾分会、Democracy.net.ph、媒体替代基金会、Beyond Access、Molave 基金会、菲律宾国家图书馆、ICT Davao Inc、WiFi 互动网络、美国商会、欧洲商会、菲律宾跨国公司协会、澳大利亚-新西兰商会、加拿大商会、韩国商会、日本商会、菲律宾游戏开发者协会、菲律宾有线电视