嵌入方法已成为一种有价值的方法,用于将基本信息从复杂的高维数据提炼成更容易访问的低维空间。嵌入方法在生物数据中的应用表明,基因嵌入可以有效地捕获基因之间的物理,结构和功能关系。但是,该实用程序主要是通过使用基因嵌入来实现下游机器学习任务来实现的。直接检查嵌入的嵌入,尤其是对嵌入空间中基因集的分析所做的少得多。在这里,我们提出了一种用于网络数据嵌入和相似性(Andes)的算法,这是一种新型最佳匹配方法,可以与现有基因嵌入式使用,以比较基因集,同时调解基因集多样性。这种直观的方法对改善各种任务的嵌入空间的实用性具有重要的下游含义。具体而言,我们展示了安第斯山脉应用于编码蛋白质相互作用的不同基因嵌入时,可以用作一种新型的过度反应和基于等级的基因集合富集分析方法,以实现最新的性能。此外,安第斯山脉可以使用多生物联合基因嵌入来促进跨生物体的功能知识转移,从而允许跨模型系统映射表型。我们的灵活,直截了当的最佳匹配方法可以扩展到设定元素之间具有不同社区结构的其他嵌入空间。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年10月1日发布。 https://doi.org/10.1101/2024.03.20.586035 doi:Biorxiv Preprint
结果总共有17个系统评价和荟萃分析,其中包括219次随机对照试验,39个113个母亲和20 915名婴儿。大约88%的研究具有中等和高于证据的确定性。益生菌是降低妊娠降低风险的最常见和有效的干预措施(在平均差异(MD)= -2.92,-0.05; i 2 = 45,98.97)中的禁食血糖,空腹血清胰岛素(MD = -2.3,-2.3,-2.06; −2.06; i 2 = 45 = 45,77) = -0.16; I 2 = 0.00),胰岛素抵抗(HOMA-IR)(MD = -20.55,-0.16; i 2 = 0.00,72.00)和脂质代谢(MD = -5.47,0.98; i 2 = 0.00,90.65)。它也可以有效预防和治疗乳腺炎(风险比(RR)= 0.49; i 2 = 2.00),可缓解焦虑症状(MD = -0.99,0.01; i 2 = 0.00,70.00),泌乳中的抑郁症,泌乳中的抑郁症定植(优势比(OR)= 0.62; i 2 = 4.80),没有不良事件。它还有效地重塑了婴儿肠道微生物组(MD = 0.89; i 2 = 95.01),并防止了婴儿过敏。但是,对妊娠结局和先兆子痫事件的研究有限。
在马来西亚种植了多种芒果品种数十年,水果对全国的交易产生了重大影响。Harumanis在口味和质量方面是最杰出的芒果品种,导致每公斤高达8.57美元的优质价格。由于类似的形态特征,这引发了欺诈以替换较便宜的芒果品种,例如Tong Dam和Susu。形态学特征通常用于区分Harumanis芒果与其他品种,尽管它效率低下,稳定且受环境因素的影响不佳。这项研究旨在评估三种芒果品种中的遗传多态性,并评估保守DNA衍生多态性(CDDP)作为区分Harumanis和非Harumanis Mango样品的DNA标记的潜力。总共研究了15个Harumanis和非Harumanis芒果样品。通过一组14个芒果样品样品的六个CDDP引物扩增了总共371个带。所有六个引物观察到的多态性百分比高于65%。底漆WRKY-R1显示出最高的多态性百分比和多态性信息含量,分别为100%和0.44,使其成为该研究中最有效的CDDP底漆,可在这项研究中区分Harumanis和非Harumanis芒果品种。底漆WRKY-F1在8.57时表现出最高的分辨能力值,最多的基因座数为15。基于CDDP数据构建的UPGMA树状图显示,将14个样品分组为四个主要簇,其中各种不同的品种形成了自己的包装。这项研究表明,CDDP标记可以有效地用于表征不同芒果基因型和遗传多样性分析中,从而促进了领先的Harumanis芒果的DNA指纹的发展,以及对马来西亚芒果水果的更好管理。
原件收到日期:2024 年 12 月 7 日 接受出版日期:2024 年 2 月 8 日 Mohammed Amine Khater 机械工程博士 机构:LaRTFM,奥兰国立理工学院 MA 地址:阿尔及利亚奥兰 电子邮件:m-amine.khater@enp-oran.dz Chaaben Arroussi 机械工程博士 机构:谢里夫大学 LPTPM 实验室 地址:阿尔及利亚奥兰 电子邮件:c.arroussi@univ-chlef.dz Sid Ahmed Memchout 物理学博士 机构:奥兰 1 大学 LPCMME 实验室 地址:阿尔及利亚奥兰 电子邮件:msidahmed@hotmail.fr 摘要 本研究使用先进的有限元分析全面研究了受到轴向压缩载荷的 X60 钢管的抗屈曲性能。我们精心开发了一个详细而复杂的三维数值模型,用于分析各种关键参数在不同条件下如何影响管道的屈曲行为。所研究的关键参数包括管道的几何形状,特别是其外径和壁厚、内部压力以及钢材的机械性能,例如屈服强度和抗拉强度。研究结果表明,临界屈曲载荷对管道外径、壁厚、内部压力和屈服应力以及其他机械性能的变化高度敏感。对有限元分析结果和分析模型得出的结果进行全面比较,发现外径和壁厚具有良好的相关性,但在屈服强度方面存在很大差异,这突出了需要进一步研究的领域。
已经认识到了基因组三维结构的变化的影响,但固体癌组织研究受到限制。Here, we performed integrated deep Hi-C sequencing with matched whole-genome sequencing, whole-genome bisulfite sequencing, 5-hydroxymethylcytosine (5hmC) sequencing and RNA sequencing across a cohort of 80 biopsy samples from patients with metastatic castration-resistant prostate cancer.在基因表达,5-甲基胞嘧啶/5HMC甲基化以及A和B(开放和闭合)染色质区室之间的结构变异与突变率中存在显着差异。肿瘤的一个子集在AR基因座表现出耗尽的区域染色质接触,与肉瘤外圆形DNA(ECDNA)有关,对AR信号抑制剂的反应较差。我们还确定了与甲基化结构,基因表达和预后差异差异相关的拓扑亚型。我们的数据表明,DNA相互作用可能易于结构变体形成,以复发性TMPRSS2 - ERG融合为例。这种全面的综合测序工作代表了独特的临床肿瘤资源。
随着微生物组领域从描述性和关联研究移动到机械和介入性研究,能够说明实验设计中的所有混杂变量,其中包括母体效应1,CAGE效应2,设施差异3,以及实验室和样品处理协议4,对结果的解释至关重要。尽管有明显的程序和生物信息学改进,但仍会发生无法解释的可变性和缺乏可复制性。一个不充分的因素是微生物组是动态的,并且表现出可以改变微生物组组成5-7的昼夜振荡。在对雄性小鼠的16S扩增子测序研究的回顾性分析中,我们表明样品收集时间会影响微生物组研究得出的结论,其效果大小大于每日实验性干预或饮食变化的结论。实验组和对照组之间微生物组组成的差异的时机在每个实验中都是独特的。样本收集时间的短短只有4小时就可以得出截然不同的结论。在采集样本时缺乏一致性可能会解释微生物组研究中的跨研究可复制性不佳。昼夜节奏对其他领域的结果和研究设计的影响尚不清楚,但可能很重要。
,我们使用C-AFM在200个电荷 - 释放循环后,从液体电解质(LE)电池的NMC阴极的二级粒子成像。它揭示了主要颗粒的有趣电导率结构以及它们在骑自行车过程中形成的裂纹。虽然主粒子的总体趋势要较低,但导电较近,但另一种效果会导致看似随机的电导率变化。局部C-AFM证明,某些主要颗粒可能由于裂缝而失去了与邻居的电气接触,并断开了连接。效果不可忽略,因为在几个谷物上的当前轮廓显示出数量级的差异,从而影响(减少)总电池的性能。
。CC-BY 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2024 年 9 月 9 日发布了此版本。;https://doi.org/10.1101/2023.09.27.559806 doi:bioRxiv 预印本
对抗抑郁药的无反应的全基因组荟萃分析鉴定了新的基因座和潜在药物Elise Koch(PhD)1,*,TuuliJürgenson(PhD)2,GuðmundurEinarsson(Phd)3 , Kristi Krebs (PhD) 2 , Yuhao Lin (BSc) 7 , Ying Xiong (MSc) 5 , Estonian Biobank Research Team 8,# , Yi Lu (PhD) 5 , Sara Hägg (PhD) 5 , Miguel E. Rentería (PhD) 4 , Sarah E. Medland (PhD) 4 , Naomi R. Wray (PhD) 4 , Nicholas G. Martin (PhD) 4 ,克里斯托弗·胡贝尔(MD,博士)7,9,Gerome Breen(博士学位)7,Thorgeir Thorgeirsson(博士学位)3,HreinnStefánsson(博士学位)3,KáriStefánsson(KáriStefánsson)(MD,MD,MD,PhD)3,10 Lili Milani(PhD) Kevin S. O'Connell(PhD)1,* 1。精神病学精神病学中心,奥斯陆大学医院心理健康与成瘾司和挪威奥斯陆奥斯陆大学临床医学研究所。2。爱沙尼亚基因组中心,基因组学研究所,塔尔图大学,爱沙尼亚。3。冰岛雷克雅未克的遗传学/安尔根。4。大脑与心理健康计划,QIMR Berghofer医学研究所,澳大利亚昆士兰州布里斯班5。医学流行病学和生物统计学系,瑞典Karolinska Institutet 6。生物医学科学学院,昆士兰州大学医学院,澳大利亚昆士兰州布里斯班大学7。精神病学研究所,心理学与神经科学研究所;社会,遗传和发展精神病学中心;伦敦国王学院,英国伦敦。8。爱沙尼亚基因组中心,基因组学研究所,塔尔图大学,爱沙尼亚。9。10。12。国家基于登记册的研究中心,AARHUS商业与社会科学,丹麦AARHUS的AARHUS大学。冰岛冰岛大学卫生科学学院医学院,冰岛雷克雅未克11. 遗传学和个性化医学诊所,塔尔图大学医院,爱沙尼亚。 kg杰布森神经发育障碍中心,奥斯陆大学和奥斯陆大学医院,奥斯陆,挪威 *相应的作者:Elise Koch(E.M.Koch@medisin.uio.no)或Ole.andreassen(Ole.andreassen@medisin.uio.no)或Keconn.uio.no) (K.S.oconnell@medisin.uio.no)Kirkeveien 166,0450 OSLO,挪威冰岛冰岛大学卫生科学学院医学院,冰岛雷克雅未克11.遗传学和个性化医学诊所,塔尔图大学医院,爱沙尼亚。 kg杰布森神经发育障碍中心,奥斯陆大学和奥斯陆大学医院,奥斯陆,挪威 *相应的作者:Elise Koch(E.M.Koch@medisin.uio.no)或Ole.andreassen(Ole.andreassen@medisin.uio.no)或Keconn.uio.no) (K.S.oconnell@medisin.uio.no)Kirkeveien 166,0450 OSLO,挪威遗传学和个性化医学诊所,塔尔图大学医院,爱沙尼亚。kg杰布森神经发育障碍中心,奥斯陆大学和奥斯陆大学医院,奥斯陆,挪威 *相应的作者:Elise Koch(E.M.Koch@medisin.uio.no)或Ole.andreassen(Ole.andreassen@medisin.uio.no)或Keconn.uio.no) (K.S.oconnell@medisin.uio.no)Kirkeveien 166,0450 OSLO,挪威