Type 1, MODY1 (HNF4 gene analysis) Type 2, MODY2 (GCK gene analysis) Type 3, MODY3 (HNF1 gene analysis) Type 4, MODY4 (PDX1 gene analysis) Type 5, MODY5 (HNF1 gene analysis) Type 6, MODY6 (NEUROD1 gene analysis) Type 7, MODY7 (KLF11 gene analysis) Type 8, Mody8(CEL基因分析)9型,Mody9(PAX4基因分析)多分泌肿瘤
描述 用于读取、写入、绘制和操作系统发育树的函数,在系统发育框架中分析比较数据,祖先特征分析,多样化和宏观进化分析,计算 DNA 序列的距离,读取和写入核苷酸序列以及从 BioConductor 导入,以及多种工具,例如 Mantel 检验、广义天际线图、系统发育数据的图形探索(alex、trex、kronoviz)、使用平均路径长度和惩罚可能性估计绝对进化率和时钟树,使用非同时期序列确定树的年代,将 DNA 转化为 AA 序列,以及评估序列比对。系统发育估计可以用 NJ、BIONJ、ME、MVR、SDM 和三角法以及几种处理不完整距离矩阵的方法(NJ*、BIONJ*、MVR* 和相应的三角法)来完成。一些函数调用外部应用程序(PhyML、Clustal、T-Coffee、Muscle),其结果返回到 R 中。
的发现:分析揭示了各种基因与每个并发症类别的关联:1)糖尿病性视网膜病与基因座22q13.33(SNP RS9616915; P = 5.18 X10 -4)中的Shank3基因有关基因座中的DCP1B基因12p13.33(SNP RS715146,RS1044950,RS113147414,RS34730825; P = 7.62 x10 -4); 2)糖尿病神经病与基因座4Q23(SNP RS4148883; P = 1.23 X10 -4),基因座2q35中的SLC11A1基因(SNP RS17235409; P = 1.85 x10 -4)和Locus 20q12(SNP 20q12) p = 2.68 x10 -4); 3)糖尿病性肾病与基因座7q31.1(SNP RS1799999; P = 1.91 X10 -4),Znf136基因中的PPP1R3A基因有关RS6076550; p = 2.86 x10 -4);和4)心血管并发症与基因座21q22.3(SNPS RS7279204,RS6518289,RS2839227,RS2839223; p = 2.18 x10 -4,3.04,3.04 x10 -4,4.51 x10 -4,5.2 x10 -4,5.22 x10 -4,5.22 x10 -4,5.22 x10 -4,5.22 x10 -4,5.22 x10 -4
Alam,S。B.,Nakano,R。和Kobashi,S。(2016)。 使用大脑MR图像中多元回归分析的大脑年龄估计。 ijicic,12(4),1385 - 1396。 Aycheh,H。M.,Seong,J.-K.,Shin,J.-H.,Na,D.L.,Kang,B.,Seo,S.W。,&Sohn,K.-A。 (2018)。 使用皮质厚数据数据的生物脑年龄预测:一项大型队列研究。 衰老神经科学的边界,10,252。 Beheshti,I.,Maikusa,N。,&Matsuda,H。(2018)。 “大脑年龄评分”(BAS)与阿尔茨海默氏病传统神经心理筛查工具之间的关联。 大脑和行为,8(8),E01020。 Beheshti,I.,Nugent,S.,Potvin,O。,&Duchesne,S。(2019年)。 基于神经影像学的脑年龄框架中的偏置调整:一个健壮的方案。 神经图像:临床,24,102063。 Bland,J。M.和Altman,D。G.(1994)。 回归均值。 BMJ,308(6942),1499。 Brown,T。T.,Kuperman,J.M.,Chung,Y.,Erhart,M.,McCabe,C.,Hagler Jr,…Dale,A.M。(2012)。 生物成熟度的神经解剖学评估。 Curlant Biology,22(18),1693 - 1698年。 Calkins,M。E.,Merikangas,K。R.,Moore,T。M.,Burstein,M.,Behr,M。A.,Satterthwaite,T。D.,…Gur,R。E.(2015)。 费城神经发育群体:建立一个深厚的表型协作。 儿童心理学和精神杂志 - 56(12),1356 - 1369。 Chen,W.,Hribar,P。和Melesta,S。(2018)。 使用残差作为因变量时的不正确推断。Alam,S。B.,Nakano,R。和Kobashi,S。(2016)。使用大脑MR图像中多元回归分析的大脑年龄估计。ijicic,12(4),1385 - 1396。Aycheh,H。M.,Seong,J.-K.,Shin,J.-H.,Na,D.L.,Kang,B.,Seo,S.W。,&Sohn,K.-A。 (2018)。 使用皮质厚数据数据的生物脑年龄预测:一项大型队列研究。 衰老神经科学的边界,10,252。 Beheshti,I.,Maikusa,N。,&Matsuda,H。(2018)。 “大脑年龄评分”(BAS)与阿尔茨海默氏病传统神经心理筛查工具之间的关联。 大脑和行为,8(8),E01020。 Beheshti,I.,Nugent,S.,Potvin,O。,&Duchesne,S。(2019年)。 基于神经影像学的脑年龄框架中的偏置调整:一个健壮的方案。 神经图像:临床,24,102063。 Bland,J。M.和Altman,D。G.(1994)。 回归均值。 BMJ,308(6942),1499。 Brown,T。T.,Kuperman,J.M.,Chung,Y.,Erhart,M.,McCabe,C.,Hagler Jr,…Dale,A.M。(2012)。 生物成熟度的神经解剖学评估。 Curlant Biology,22(18),1693 - 1698年。 Calkins,M。E.,Merikangas,K。R.,Moore,T。M.,Burstein,M.,Behr,M。A.,Satterthwaite,T。D.,…Gur,R。E.(2015)。 费城神经发育群体:建立一个深厚的表型协作。 儿童心理学和精神杂志 - 56(12),1356 - 1369。 Chen,W.,Hribar,P。和Melesta,S。(2018)。 使用残差作为因变量时的不正确推断。Aycheh,H。M.,Seong,J.-K.,Shin,J.-H.,Na,D.L.,Kang,B.,Seo,S.W。,&Sohn,K.-A。(2018)。使用皮质厚数据数据的生物脑年龄预测:一项大型队列研究。衰老神经科学的边界,10,252。Beheshti,I.,Maikusa,N。,&Matsuda,H。(2018)。“大脑年龄评分”(BAS)与阿尔茨海默氏病传统神经心理筛查工具之间的关联。大脑和行为,8(8),E01020。Beheshti,I.,Nugent,S.,Potvin,O。,&Duchesne,S。(2019年)。基于神经影像学的脑年龄框架中的偏置调整:一个健壮的方案。神经图像:临床,24,102063。Bland,J。M.和Altman,D。G.(1994)。回归均值。BMJ,308(6942),1499。Brown,T。T.,Kuperman,J.M.,Chung,Y.,Erhart,M.,McCabe,C.,Hagler Jr,…Dale,A.M。(2012)。 生物成熟度的神经解剖学评估。 Curlant Biology,22(18),1693 - 1698年。 Calkins,M。E.,Merikangas,K。R.,Moore,T。M.,Burstein,M.,Behr,M。A.,Satterthwaite,T。D.,…Gur,R。E.(2015)。 费城神经发育群体:建立一个深厚的表型协作。 儿童心理学和精神杂志 - 56(12),1356 - 1369。 Chen,W.,Hribar,P。和Melesta,S。(2018)。 使用残差作为因变量时的不正确推断。Brown,T。T.,Kuperman,J.M.,Chung,Y.,Erhart,M.,McCabe,C.,Hagler Jr,…Dale,A.M。(2012)。生物成熟度的神经解剖学评估。Curlant Biology,22(18),1693 - 1698年。Calkins,M。E.,Merikangas,K。R.,Moore,T。M.,Burstein,M.,Behr,M。A.,Satterthwaite,T。D.,…Gur,R。E.(2015)。费城神经发育群体:建立一个深厚的表型协作。儿童心理学和精神杂志 - 56(12),1356 - 1369。Chen,W.,Hribar,P。和Melesta,S。(2018)。使用残差作为因变量时的不正确推断。会计研究杂志,56(3),751 - 796。https://doi.org/10.1111/1475-679x.12195 Chung,Y.使用机器学习来确定与