我想感谢以下人员以各种形式给予我的帮助。Ray Tedman 博士是一位出色的导师,他付出了额外的时间和精力,帮助我成长为一个会走路、会说话的解剖学家。Greg Bain 博士是一位出色的联合导师,他总是说正确的话。你们对这个项目的热情给了我不可估量的帮助。Wesley Fisk 先生为博士生提供了所有可能需要的技术和社会支持。感谢你们所做的一切,希望你们能给予我更多帮助。Stelios Michas 先生(你该有自己的产品线了!)感谢你的帮助和友谊。每当事情看起来行不通时,你总能找到办法让它成功。医学和兽医学研究所的 Rob Moore 博士和他的技术人员 Greg 和 Beverly 对脱钙标本进行了 x 射线检查。妇女儿童医院的 Nick Zabanias 先生负责做所有的 x 射线和 CT 检查。 Aman Sood 博士完成了四角融合手术,并给出了许多很好的建议。医学和兽医学研究所的 Nicola Fazzalari 博士提供了所有建议并允许我使用您的大冰箱!Tavik Morgenstern 先生是一位好伙伴,不时借给我艺术眼光。我保证不会再弄乱您的扫描仪了!Maciej Henneberg 教授和阿德莱德大学解剖科学系的全体工作人员,激励我(有意或无意地)成为最好的解剖学家,让上班感觉不那么像工作。Ian Gibbins 教授看到了别人没有看到的东西,给了我工作,并时不时地问我“可怕的问题”。Don 是一位很棒的好朋友,尽管写这样的东西会让我感到疯狂,但他总是在我身边。妈妈和爸爸从第一天起就给予我所有的支持和建议。最后,但绝非最不重要的一点,感谢 Kara,她是我生命中最重要的人,我珍惜她。这是献给你的。
在人类功能,病变和动物数据中抽象的多行证据表明,小脑角色,尤其是Crus I,Crus II和Lobule VIIB,在认知功能中。然而,缺少将认知功能的不同方面映射到小脑结构。我们分析了来自健康脑网络(HBN)的结构神经影像学数据。小脑包裹。规范相关分析(CCA)检查了与认知功能相关的区域灰质体积(GMV)差异(用NIH工具箱认知域,NIH-TB量化),对心理病理学的严重程度,年龄,性别,性别,性别,扫描位置和内部体积进行了考虑。多变量CCA发现了两个需要潜在认知规范(NIH-TB子量表)和脑规范变量(小脑GMV和颅内体积,ICV)的两个组件之间的显着相关性。组件对应于部分共享的小脑 - 认知功能关系,其中的第一个映射涉及认知灵活性(r = 0.89),处理速度(r = 0.65)以及与CRUS II(r = 0.57)和LOBULE X(r = 0.59)的区域GMV相关的工作记忆(r = 0.52),包括crus x(r = 0.59)。 r = 0.49)与工作记忆相关(r = 0.51)。我们展示了在转诊样品中认知功能的小脑形态的结构性典型化的证据。
方法 支持本研究结果的数据可根据合理要求从通讯作者处获取。 作为国家科学中心获奖项目“在生理条件下和支架置入后小直径脑循环动脉的血流动力学建模”的一部分,我们创建了所提出的自发性基底神经节 ICH 模型。 研究方案经波兰华沙医科大学伦理委员会批准(编号 20/2021)。 我们将造影剂(硫酸钡和明胶的混合物)注入 40 个未固定的基底神经节解剖标本,随后将其固定在 10% 福尔马林缓冲溶液中,并用尼康/Metris XT H 225 ST 微型计算机断层扫描 (CT) 扫描仪进行扫描(有关标本准备的详细分步描述,请参阅我们的方法学文章 17 )。由于分辨率高(体素大小高达 27 µm),该方法可以清晰地显示从大脑中动脉(豆纹动脉)分支出的所有穿支动脉。18 我们还收集了关于年龄、性别和 3 个区域动脉粥样硬化存在的尸检数据:冠状动脉、Willis 环和主动脉。动脉粥样硬化的严重程度分为无动脉粥样硬化、动脉粥样硬化、纤维粥样硬化或复杂病变。在附加实验中测量了注射压力(补充材料)。注射期间压力约为 60 mm Hg,造影剂凝固时最大压力为 260 mm Hg;这些数值在医学上是合理的,并且比导致颅内主要动脉破裂所需的平均压力低 5 倍以上。19,20
胼胝体发育不全 (CCA) 是最常见的先天性畸形之一,其神经发育结果不确定,尤其是当疾病被孤立时。为了向父母提供明智的咨询,在怀孕早期确定与预测结果相关的解剖标记至关重要。使用 CCA 对胎儿大脑进行定量探索的情况很少见,而且主要限于对特定大脑结构的研究。在这里,我们提出了一种基于微分同胚变换的胎儿大脑磁共振成像 (MRI) 分析流程。它包括两个步骤:半自动胎儿 MRI 预处理程序和量化与正常发育的解剖偏差的流程。MRI 预处理之后,使用配准将每个体积胎儿大脑与年龄匹配的健康模板大脑在全球范围内进行比较。将变形并行传输到同一空间以纠正胎儿之间的年龄差异。使用主成分分析和分类确定了 CCA 特有的变形模式。该流程在回顾性选择的 38 个健康胎儿和 73 个 CCA 胎儿的 MRI 上进行了测试。根据更多局部分析,最相关的 14 分类变形模式将众所周知的大脑改变与 CCA 相结合。15 这项初步工作有望定量探索异常胎儿大脑 16 并将在未来用于识别与不良临床结果相关的解剖特征 17。18
收到2022年4月21日;修订的手稿于2022年7月25日收到; 2022年8月3日接受; J-Stage Advance出版物在线发布于2022年9月14日,初次审查时间:15天心理学系,上海大学上海大学,上海(L. Geng,Y.Y。,L。Gao,L。Gao,Y.W.,J.L.,J.L.);吉安医院吉安医院心脏病学系(L. geng);上海北海大学医学院心血管医学系,上海(X.S.);上海Baoshan综合中国医学综合医院心脏病学系(P.D.),中国前两位作者对这项研究也同样贡献(L. Geng,X.S。)。邮寄地址:Qi Zhang,医学博士,博士,心脏病学,上海东医院,汤吉大学,上海,200120,中国。电子邮件:zhangqnh@hotmail.com所有权利都保留给日本发行协会。有关权限,请发送电子邮件至cj@j-circ.or.jp ISSN-1346-9843
1个神经外科手术部,医学和外科专科系,放射科学与公共卫生,布雷西亚大学,意大利25123 Brescia; edoardo_agosti@libero.it(E.A.)2 2,德国Tübingen大学医院Eberhard-Karls大学,德国Tübingen大学医院,德国Tübingen,Brescia临床和实验科学系解剖学和生理病理学3部分 D-72076 Tübingen, Germany 5 Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy 6 Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy 7 Department of Ophthalmology, University Hospital Udine,P.Le S. Maria Della Misericordia 15,33100意大利乌丁市8神经外科,Fondazione Policlinico Rimuceionio A. Gemelli ircss,00168,00168,意大利00168,意大利9 Neurosurgery,Neurosurgery,Univeritial,Cattolica del Sacro cuore,Itspem,20123年3月相关的著作:同样对这项工作。2,德国Tübingen大学医院Eberhard-Karls大学,德国Tübingen大学医院,德国Tübingen,Brescia临床和实验科学系解剖学和生理病理学3部分 D-72076 Tübingen, Germany 5 Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy 6 Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy 7 Department of Ophthalmology, University Hospital Udine,P.Le S. Maria Della Misericordia 15,33100意大利乌丁市8神经外科,Fondazione Policlinico Rimuceionio A. Gemelli ircss,00168,00168,意大利00168,意大利9 Neurosurgery,Neurosurgery,Univeritial,Cattolica del Sacro cuore,Itspem,20123年3月相关的著作:同样对这项工作。
闭环直接脑刺激是一种很有前途的调节神经活动和行为的工具。然而,如何最佳地靶向刺激以调节特定认知功能所依赖的特定脑网络中的脑活动仍不清楚。在这里,我们检验了以下假设:刺激的行为和生理效应取决于刺激目标的解剖和功能网络特性。我们在 47 名神经外科患者学习和回忆单词表时施加了闭环刺激。经过训练以预测记忆功能的瞬间失误的多变量分类器在任务的学习阶段触发了外侧颞叶皮层 (LTC) 的刺激。我们发现,当将 LTC 刺激施加到白质通路附近的目标时,记忆力会得到特别改善。对于白质附近的目标,记忆力改善最大,这些目标也显示出与大脑记忆网络的高度功能连接。这些目标还降低了该网络中的低频活动,这是成功记忆编码的既定标志。这些数据揭示了解剖和功能网络如何介导刺激的行为和生理效应,为闭环 LTC 刺激可以改善情景记忆提供了进一步的证据,并提出了一种通过改进刺激定位来优化神经调节的方法。
深部脑刺激 (DBS) 疗法需要在植入前进行广泛的针对患者的计划,以实现最佳临床效果。对患者大脑图像进行集体分析很有前景,可以为您提供更系统的计划帮助。本文介绍了使用组特定的多模态迭代模板创建过程的规范化管道设计。重点是比较一系列免费配准工具的性能并选择最佳组合。该工作流程应用于 19 名具有 T1 和 WAIR 模态图像的 DBS 患者。使用文献中的几种设置,使用 ANTS、FNIRT 和 DRAMMS 计算非线性配准。使用丘脑和丘脑底结构的单一专家标签及其在整个组中的一致性来测量配准精度。使用其他地方发布的高方差设置的 ANTS 提供了最佳性能。FNIRT 和 DRAMMS 均未达到 ANTS 的性能水平。根据所得的解剖结构的标准化定义,使用来自 19 名患者的数据提出了定义 58 个结构的间脑区域图谱。
客观和影响声明。从两光子显微镜(下午2点)的血管分割的大脑血管造影在血液动力学分析和疾病诊断中具有重要的应用。在这里,我们开发了一种可概括的深度学习技术,用于准确2pm从多个下午2点设置获得的小鼠大脑中相当大区域的血管分割。该技术在计算上是有效的,因此非常适合大规模神经血管分析。简介。从下午2点开始血管造影的血管分割是脑血管血液动力学建模的重要第一步。基于深度学习的现有分割方法要么缺乏从不同成像系统中概括数据的能力,要么在大规模血管造影上计算上不可行。在这项工作中,我们通过一种可以推广到各种成像系统的方法来克服这两个局限性,并且能够分割大规模血管造影。方法。我们采用了一个具有损失函数的计算上有效的深度学习框架,该损失函数结合了网络输出的平衡二进制跨性损失和总变化正则化。在从尺寸为808×808×702μm的小鼠大脑中获得的实验获得的体内血管造影中,其效果得到了证明。结果。为了证明我们的框架的卓越概括性,我们从下午2点开始训练数据,并在没有任何网络调整的情况下从不同显微镜中展示了来自不同显微镜的数据的高质量分割。结论。总的来说,与最先进的艺术相比,我们的方法以每秒分段和3×更大的深度来证明10×更快的计算。我们的工作为脑血管系统提供了可概括且计算上有效的解剖建模框架,该框架由深度学习的血管分割组成,然后是图形。它为未来建模和分析血液动力学反应的道路铺平了道路,这是以前无法访问的更大的尺度。
术前功能评估在肺叶切除术之前仍基于肺功能测试(PFTS),并且段计数被认为是预测术后功能(PF)的标准方法。我们的目的是将这种方法与定量功能成像技术相关联。包括从8月至2023年12月的早期肺癌手术的候选人。排除标准是良性疾病,晚期肺癌和接受肺切除术的受试者。我们的分析评估了FEV1,FVC和DLCO在手术前和六个月后进行的。米兰政治家的生物工程师分析了术前和术后CT扫描。对放射学图像进行处理以获得解剖学分割,对肺的重量和功能体积的分析(-910HU和-500HU)。分析的重点是测量的术后FEV1和FVC值与通过段计数和成像方法计算的预测值的相关性。我们招募了22例接受肺叶切除术并符合纳入标准的患者。与解剖学公式相比,使用CT成像在计算PF中,使用CT成像没有显示出统计学上的显着差异(P = 0.775)。但是,CT结果在预测术后FVC值时出现了出色的结果(P <0,001)。我们的研究证实了定量CT分割预测PF的有效性。使用CT分割预测术后FVC值的优势是术后风险感染和ICU停留的有用预测指标。此外,我们将继续研究,以调查在分割切除术或具有严重功能不足的受试者的情况下两种方法之间存在差异。