鉴于化学行业对绿色和可持续技术的需求不断增长,他们的原子有效和选择性氧化反应代表了一个关键的挑战。 [1-5]一氧化二氮,N 2 O,在解决此问题中起着重要的作用。 虽然它是一种良好的特种化学物质,主要以其用作麻醉而闻名,但在1980年代,它已开始引起作为选择性氧化剂的大幅关注。 由于其捐赠单个氧原子的能力,它避免了过度氧化的风险,并且尤其是在生态上良性n 2作为唯一的副产品,将其作为许多常规氧化剂的绿色替代品。 [6-8]在接下来的几年中,N 2 O已被证明可以解锁苯对苯酚或甲烷至甲醇的一步氧化的独特途径。 [9,10]前者的高度选择性和便利性,导致了1990年代后期的Alphox过程。 在其中,Boreskov Institute鉴于化学行业对绿色和可持续技术的需求不断增长,他们的原子有效和选择性氧化反应代表了一个关键的挑战。[1-5]一氧化二氮,N 2 O,在解决此问题中起着重要的作用。虽然它是一种良好的特种化学物质,主要以其用作麻醉而闻名,但在1980年代,它已开始引起作为选择性氧化剂的大幅关注。由于其捐赠单个氧原子的能力,它避免了过度氧化的风险,并且尤其是在生态上良性n 2作为唯一的副产品,将其作为许多常规氧化剂的绿色替代品。[6-8]在接下来的几年中,N 2 O已被证明可以解锁苯对苯酚或甲烷至甲醇的一步氧化的独特途径。[9,10]前者的高度选择性和便利性,导致了1990年代后期的Alphox过程。在其中,Boreskov Institute在其中,Boreskov Institute
1口腔生物学系,维也纳医科大学大学牙科诊所,奥地利1090年; caroline7_k@hotmail.com(k.a.a.a.); layla.panahipour@meduniwien.ac.at(L.P.)2 Karl Donath硬组织和生物材料研究实验室,维也纳医科大学牙科诊所,奥地利1090,奥地利维也纳; patrick.heimel@trauma.lbg.ac.at(P.H.); stefan.tangl@meduniwien.ac.at(S.T。); stefan.lettner@meduniwien.ac.at(S.L.); carina.kampleitner@meduniwien.ac.at(C.K。)3奥地利维也纳1090号组织再生的奥地利集群4路德维希·鲍尔茨曼创伤学院,与AUVA合作研究中心,奥地利维也纳维也纳1200号,奥地利维也纳大学诊所,奥地利1090 Vienna,奥地利1090 Vienna,奥地利,奥地利,奥地利1090; ulrike.kuchler@meduniwien.ac.at 6牙科医学院牙科医学学院,伯尔尼大学3010,瑞士伯尔尼 *通信:Reinhard.gruber.gruber@meduniwien.ac.at3奥地利维也纳1090号组织再生的奥地利集群4路德维希·鲍尔茨曼创伤学院,与AUVA合作研究中心,奥地利维也纳维也纳1200号,奥地利维也纳大学诊所,奥地利1090 Vienna,奥地利1090 Vienna,奥地利,奥地利,奥地利1090; ulrike.kuchler@meduniwien.ac.at 6牙科医学院牙科医学学院,伯尔尼大学3010,瑞士伯尔尼 *通信:Reinhard.gruber.gruber@meduniwien.ac.at
免疫检查点抑制剂(ICI)会导致各种与免疫相关的不良事件(IRAE)。中,甲状腺功能障碍最常在内分泌环境(1)中观察到。在一项队列研究中,有44%的ICI治疗患者出现了某种形式的甲状腺功能减退症,大多数ICI诱导的甲状腺功能障碍是破坏性的甲状腺炎或甲状腺功能减退症(2)。ICI引起的坟墓疾病的频率很低; ICI给药后,约有2%的患者表现出甲状腺毒性(3)。在一项针对恶性黑色素瘤患者的大型队列研究中,接受ICI后出现甲状腺毒性病的患者表现出无效的生存率,但癌症结局与甲状腺功能减退症之间没有相关性(4)。我们对川崎医学院医院接受ICI治疗的466例患者进行了一次单中心回顾性研究,并报告了被诊断为内分泌相关IRAE的患者的生存率明显更高(5)。我们机构中与内分泌相关的IRAE的发生率为25.5%,其中大多数是主要甲状腺功能减退症。在日本患者中,在伴有内分泌相关的IRAE的情况下,平均观察期可能更长,但先前的研究不足以评估IRAE患病率与ICI治疗的效率之间的相关性。这项研究的目的是评估甲状腺功能障碍程度与ICI治疗的效率之间的相关性在评估甲状腺功能的ICI治疗患者中。
我们将在2025年5月/6月号中强调“亚洲老化”的主题。经济增长的“惊人亚洲”同时是“灰色亚洲”。这是什么后果,我们如何将挑战变成机遇?各种专家讨论了这个热门问题。我们的下一个问题将于2025年5月10日发布在我们的网站上。
二维(2D)材料长期以来一直是材料科学的焦点,这是由于其高度可调的化学结构,均匀的孔径分布和内在的传输途径。在过去的二十年中,突破性的2D材料的出现,包括石墨烯,过渡金属二分法(TMDC),分层双氢氧化物(LDHS),金属氮化物/碳化物(MXENES),金属 - 有机框架(MOFS)和远处的有机框架(MXENES),以及赖以生成的框架(MOFS),以及赖因构架(COFS),并列出了赖因(COFS),并将其延伸 - 本期特刊旨在探索和最大化2D材料在气体捕获和分离中的潜力,以理论和基于模拟的进步进行桥接实验演示。通过促进一种系统的方法来采用2D材料来进行高效,低能的膜工艺,我们希望为其工业实施和未来创新建立全面的基础。
感知是一个复杂的过程,涉及多个大脑区域,包括丘脑,皮层和边缘系统。神经科学表明,慢性疼痛被称为神经可塑性,会导致大脑结构和功能的变化[13,14]。通过应用神经科学原理,麻醉护士可以制定更有效的疼痛管理策略。例如,阿片类药物虽然有效,但仍有重大风险,包括成瘾和呼吸抑郁症。神经科学为替代疗法打开了大门,例如神经阻滞,经颅磁刺激和脊髓刺激,所有这些均应靶向特定的神经途径,以缓解疼痛,而没有与阿片类药物相关的副作用[15]。在这种情况下,了解疼痛的神经科学似乎使麻醉护士能够更好地管理患有复杂疼痛状况的患者,例如患有神经性疼痛或纤维肌痛的患者。这些疾病通常涉及疼痛处理大脑区域中的神经活动异常,使它们对传统疼痛治疗有抵抗力。通过结合基于神经科学的方法,麻醉护士可以为这些患者提供更全面,有效的护理。
脂质双层对包括铜阳离子在内的离子不渗透。铜是生命的必不可少的痕量元素,存在于各种酶的活性位点中,而游离铜的内部细胞有害。铜的稳态受到了精心控制,涉及Cu(i)转运膜蛋白Ctr1和ATP7A/b的Cu。铜稳态的破坏已被报道为潜在的抗癌策略。有了这个目标,我们开发了一系列的亲脂化合物,具有两个铜协调(苯甲)咪唑基团,它们能够充当离子载体,并在跨膜上运输铜阳离子。这首先在脂质体中证明了cu(i)敏感的荧光探针。其次,这些化合物中的五种被证明可以恢复已删除CTR1的酵母细胞的生长,这表明这些离子载体能够将铜转运到酵母细胞中。第三,肝癌细胞中的细胞毒性研究强调了Cu离子载体在细胞中的活性的关键作用。进一步研究了最活跃的化合物之一的影响,称为Cuphoralix,没有显示细胞内Cu水平的肝细胞水平增加,但明确的金属胁迫指示。同步X射线荧光研究来研究Cuphoralix对亚细胞铜分布的影响,揭示了铜从囊泡从囊泡重新分布到细胞质。这解释了这种新型铜离子载体的有效细胞毒性,需要进一步研究其抗癌作用。
急性髓样白血病(AML)是成年人中最常见的白血病类型之一,5年生存率为30.5%。这些差的患者结局归因于肿瘤复发,这是由于无效的先天免疫激活,T细胞耐受性和缺乏免疫记忆的原因。因此,需要新的策略来激活先天和效应的免疫细胞并引起对AML的长期免疫力。一种解决这些问题的方法是通过干扰素基因(STING)途径激活的刺激剂,该途径会产生I型干扰素(I型IFN)对先天性和适应性免疫激活至关重要。在这里,我们报告说,带有Mn 2+的基于脂质的纳米颗粒平台(CMP)的系统性免疫疗法在传播AML的小鼠模型中表现出强大的抗肿瘤疗效。此外,CMP免疫疗法与免疫检查点结合了针对细胞毒性T-淋巴细胞相关蛋白4(抗CTLA-4)引起的强大先天和适应性免疫激活,并具有增强的细胞毒性免疫激活,并增强了对AML的细胞毒性潜能,从而在与Aml恢复后延伸了动物生存。总体而言,这种CMP组合免疫疗法可能是针对AML和其他传播癌症的有前途的方法。
1化学工程系,哥伦比亚大学,纽约,纽约,美国。2美国南卡罗来纳州哥伦比亚大学的化学与生物化学系,美国南卡罗来纳州。3 Wasit University,Hay al-Rabea,Kut,Wasit,Wasit,伊拉克52001。 4物理研究所,约翰内斯·古腾堡大学Mainz,Staudingerweg 7,D-55128,德国Mainz。 5化学工程系,马萨诸塞州理工学院,剑桥,马萨诸塞州02139,美国。 6克里特郡材料科学技术系,以及希腊赫拉克里翁的电子结构与激光研究所。 7UniversitätderBundeswehrMünchen,InstitutfürAngewandtePhysik und Messtechnik LRT2,Werner-Heisenberg- Weg 39,Neubiberg D-85577,德国。 8化学工程系,意大利博洛尼亚大学,博洛尼亚大学。 9 LaboratoireLéonBrillouin(LLB),CEA/CNRS UMR 12,CEA SACLAY,91191,GIF/YVETTE CEDEX法国。 10机械工程与材料科学系,生物医学工程,化学与物理,杜克大学,美国北卡罗来纳州达勒姆大学。 11 Laboratoire Gulliver,CNRS UMR 7083,ESPCI PARIS,PSL研究大学,法国75005,法国。3 Wasit University,Hay al-Rabea,Kut,Wasit,Wasit,伊拉克52001。4物理研究所,约翰内斯·古腾堡大学Mainz,Staudingerweg 7,D-55128,德国Mainz。5化学工程系,马萨诸塞州理工学院,剑桥,马萨诸塞州02139,美国。6克里特郡材料科学技术系,以及希腊赫拉克里翁的电子结构与激光研究所。 7UniversitätderBundeswehrMünchen,InstitutfürAngewandtePhysik und Messtechnik LRT2,Werner-Heisenberg- Weg 39,Neubiberg D-85577,德国。 8化学工程系,意大利博洛尼亚大学,博洛尼亚大学。 9 LaboratoireLéonBrillouin(LLB),CEA/CNRS UMR 12,CEA SACLAY,91191,GIF/YVETTE CEDEX法国。 10机械工程与材料科学系,生物医学工程,化学与物理,杜克大学,美国北卡罗来纳州达勒姆大学。 11 Laboratoire Gulliver,CNRS UMR 7083,ESPCI PARIS,PSL研究大学,法国75005,法国。6克里特郡材料科学技术系,以及希腊赫拉克里翁的电子结构与激光研究所。7UniversitätderBundeswehrMünchen,InstitutfürAngewandtePhysik und Messtechnik LRT2,Werner-Heisenberg- Weg 39,Neubiberg D-85577,德国。8化学工程系,意大利博洛尼亚大学,博洛尼亚大学。9 LaboratoireLéonBrillouin(LLB),CEA/CNRS UMR 12,CEA SACLAY,91191,GIF/YVETTE CEDEX法国。10机械工程与材料科学系,生物医学工程,化学与物理,杜克大学,美国北卡罗来纳州达勒姆大学。11 Laboratoire Gulliver,CNRS UMR 7083,ESPCI PARIS,PSL研究大学,法国75005,法国。
传统的机油燃料汽车。燃料电池车辆依赖于将氢或甲醇转化为电的燃料电池。当前的领先技术是质子交换膜燃料电池(PEMFC),该技术用气态氢和质子导电膜运行。它提供了许多好处:良好的效率,可靠性和耐用性。但是,整体成本仍然很高,并且在传播技术方面的性能和耐用性方面的改善仍然是必要的。到目前为止已经研究了两种主要策略:一种涉及较便宜的催化剂的设计和开发,例如Pt/motybdenum Carbides; [2]另一个有吸引力的解决方案是在高温下操作PEMFC,这将简化热量管理,提高效率,提高质量运输,并极大地限制了一氧化碳对含量的催化剂。[3]美国能源部为PEMFC操作设定了120°C的操作温度。然而,由全氟磺酸(PFSA)聚合物组成的最先进的质子交换膜(PEM)被认为是基准材料,具有较差的机械和导电性能,可大大降低其在t> 100°C时的功效,从而限制了工作温度。在过去的二十年中,科学界制定了许多策略,以增强High