我们研究了 k -稳定器通用量子态的概念,即 n -量子比特量子态,这样就可以仅使用局部操作和经典通信在任何 k 量子比特上诱导任何稳定器状态。这些状态概括了 Bravyi 等人提出的 k -可配对状态的概念,可以从组合的角度使用图状态和 k -顶点小通用图进行研究。首先,我们证明了 k -稳定器通用图状态的存在,它们的大小在 n = Θ(k2) 量子比特时是最优的。我们还提供了参数,对于这些参数,Θ(k2) 量子比特上的随机图状态以高概率是 k -稳定器通用的。我们的第二个贡献包括在 n = O(k4) 量子比特上 k -稳定器通用图状态的两个明确构造。两者都依赖于有限域 F q 上射影平面的入射图。这比之前已知的 n = O(2 3 k) 的 k 可配对图状态的显式构造有了很大的改进,带来了一类新的、具有强大潜力的多部分量子资源。
量子纠缠是量子力学中最引人入胜的现象之一,其中两个或多个“粒子”保持互连,使得一个“粒子”状态的变化立即影响另一个状态,无论它们之间的距离如何。这种现象挑战了当地和因果关系的经典观念。从无限量子场理论的角度来看,量子纠缠可以解释为该领域统一的自动骚扰的自然结果,在该范围内,所有“粒子”都是统一,不可分割的现实的体现。
量子纠缠是量子力学中最迷人的现象之一,其中两个或多个“粒子”保持相互连接,因此一个“粒子”状态的变化会立即影响另一个“粒子”的状态,无论它们之间的距离如何。这种现象挑战了经典的局部性和因果关系概念。从无限量子场理论的角度来看,量子纠缠可以解释为场协调自刺激的自然结果,其中所有“粒子”都是场统一、不可分割的现实的表现。
使用单个电子或μ子事件和终态喷流来测量顶夸克对 (tt) 的极化和自旋关联。测量基于 CMS 实验在√ s = 13 TeV 下收集的 LHC 质子-质子碰撞数据,对应于积分光度 138 fb − 1 。通过对数据进行分箱似然拟合,同时提取极化矢量和自旋关联矩阵的所有系数。测量是全面进行的,并包含其他可观测量,例如 tt 系统的质量和 tt 静止框架中的顶夸克散射角。测得的极化和自旋关联与标准模型一致。从测得的自旋关联,应用佩雷斯-霍罗德基标准得出关于 tt 自旋纠缠的结论。标准模型预测在生产阈值和 tt 系统高质量时 tt 态的纠缠自旋。这是首次在高 tt 质量事件中观察到纠缠,其中大部分 tt 衰变是空间分离的,预期和观察到的显著性均高于 5 个标准差。
卫星量子通信的进步旨在通过提高传输信息的安全性来重塑全球电信网络。在这里,我们研究了大气湍流对地面站和卫星之间光学区域中连续变量纠缠分布和量子隐形传态的影响。更具体地说,我们研究了在下行链路和上行链路场景中,由于分布中的各种误差源(即衍射、大气衰减、湍流和探测器效率低下)导致的纠缠退化。由于使用这些分布式纠缠资源的量子隐形传态协议的保真度不够,我们包括一个中间站,用于状态生成或光束重新聚焦,以分别减少大气湍流和衍射的影响。结果表明,在低地球轨道区域的下行链路中,自由空间纠缠分布和量子隐形传态是可行的,但在中间站的帮助下,在上行链路中也是可行的。最后,完成恶劣天气条件下微波光学比较研究,以及地地和卫星间量子通信水平路径研究。
摘要 纠缠是量子信息处理的关键资源,因此需要在各种硬件平台上生成高保真度纠缠态的协议。虽然自旋链已被广泛研究以产生纠缠,但图结构也具有这种潜力;然而,只有几类图被用于这项特定任务。在本文中,我们将一种涉及两种不同耦合强度的特殊耦合方案应用于两个互连的 3×3 方图的图,使得它实际上包含三个缺陷。我们展示了这种结构如何生成贝尔态,其保真度取决于所选的耦合比。我们应用分区图论来降低图的维数,并表明,使用简化图或简化链,我们仍然可以模拟具有相同动态的相同协议。最后,我们研究了制造误差如何影响纠缠生成协议以及不同的等效结构如何受到影响,发现对于某些特定的耦合比,它们非常稳健。
单细胞RNA-seq数据为细胞内和细胞间13个过程提供了新的见解。由于多个过程在每个细胞中同时处于活动状态,例如14个细胞类型程序,分化,细胞周期和环境响应,因此它们的15个信号可以相互混淆,需要可以分离的方法可以分离和16个滤波不同的复杂生物学信号。每个这样的信号基于不同的基因17个性,可以定义细胞之间的不同关系。但是,现有方法18通常集中于单个过程或依靠过度限制的假设,从而消除了19,而不是解开生物学信号。在这里,我们开发了Celluntangler,这是一个深20个生成模型,将细胞嵌入由多个21个子空间组成的柔性潜在空间中,每个空间都设计了适当的几何形状以捕获独特的信号。22我们将Celluntangler应用于仅包含循环细胞和循环和23个非循环细胞的数据集,生成嵌入,其中细胞周期信号从非细胞周期特定信号(例如细胞类型或分化轨迹)中脱离了24个。我们25通过使用捕获和将空间26与非空间信号分开的空间26来证明Celluntangler的可扩展性。使用Celluntangler,我们可以获得27个捕获各种生物学信号并在基因28表达水平上进行增强或过滤的潜在嵌入,以进行下游分析。29
使用单个电子或μ子事件和处于终态的喷流来测量顶夸克对 ( t ¯ t ) 的极化和自旋关联。测量基于 CMS 实验收集的 LHC 在 ffiffiffi sp ¼ 13 TeV 处的质子-质子碰撞数据,对应于积分光度 138 fb − 1 。通过对数据进行分箱似然拟合,同时提取极化矢量和自旋关联矩阵的所有系数。测量是全面进行的,并包含其他可观测量,例如 t ¯ t 系统的质量和 t ¯ t 静止框架中的顶夸克散射角。测得的极化和自旋关联与标准模型一致。从测得的自旋关联中,应用佩雷斯-霍罗德基标准得出关于 t ¯ t 自旋纠缠的结论。标准模型预测在生产阈值和 t ¯ t 系统质量较高时,t ¯ t 态将发生纠缠自旋。这是首次在高 t ¯ t 质量事件中观察到纠缠,其中大部分 t ¯ t 衰变是空间分离的,预期和观测显著性均高于 5 个标准差。
受监控的量子电路可以实现前所未有的多体纠缠动态控制。在这里,我们展示了随机的、仅测量的电路,实现了 Kitaev 蜂窝模型的键和斑块耦合的竞争,产生了具有次级 L ln L 液体缩放行为的结构化体积定律纠缠相。这种相互作用的马约拉纳液体在改变相对耦合概率时获得的纠缠相图中占据高度对称的球形参数空间。球体本身是一个临界边界,量子 Lifshitz 缩放将体积定律相与近似面积定律相、颜色代码或环面代码区分开来。一个例外是一组三临界自对偶点,它们表现出有效的 (1 + 1)d 共形缩放,体积定律相和两个面积定律相在此相交。从量子信息的角度来看,我们的结果定义了在存在投影误差和随机综合征测量的情况下颜色代码的误差阈值。