bis(氟磺磺酰基)伊映阴离子(FSI-),Alcl 4-,(BRCl)N-被探索为石墨互构化合物(GICS)的石墨互相中的介体物种。[3]由于直接电池配置,DIB已从Li [4]扩展到Na,[5] K,[6] mg,[7] Ca,[8],[8]和Zn Ion [9]系统。与有机或离子液体电解质不同,近来具有高安全性和低成本的水性电解质最近正在经历蓬勃发展的发育。[3F,10]尽管已经取得了显着的进展,但与DIB相关的关键challenge位于设备级别的低能量密度。以前的尝试增加了DIB的能量密度主要依赖于使用浓缩电解质[6,11]来减少非活性溶剂的重量比。然而,在超高集中,阴极侧的阳极污染只能在动力学上抑制。在DIB充电期间大多数电解质被计算时,这仍然是一个稳定问题。金属阳极的镀层效率也很大程度上取决于在浓缩电解质下形成的钝化相间。在先前的DIB原型中,始终需要过量的金属阳极和元素。最近,使用非活动基板作为当前收集器[12]开发了“无阳极” Li-Metal电池概念,它比Li Metal都更安全,更方便
抽象的表面增强拉曼散射(SERS)平台可实现痕量分析物检测,具有重要的应用前景。通过构建/修改SERS底物的表面,可以将高稀释溶液中的分析物集中到局部活性区域中以进行高度敏感的检测。但是,由于制造过程的难度,平衡热点结构和同时平衡分析物的集中能力仍然具有挑战性。因此,制备密集有序的热点和有效浓度能力的SERS底物对于高度敏感的检测具有重要意义。在此,我们提出了AG和氟烷基修饰的分层装甲底物(AG/F-HA),该甲酸盐(AG/F-HA)具有双层堆叠设计,以将分析物浓度与热点结构相结合。微臂结构是通过飞秒激光处理来制造的,以充当超疏水和低粘合剂表面,以浓缩分析物,而阳极氧化铝(AAO)模板会形成纳米虫阵列,可作为密集和有序的热点。在热点和分析物浓度的协同作用下,Ag/f-Ha的检测极限降至10-7 m阿霉素(DOX)分子,RSD为7.69%。此外,AG/F-HA表现出极好的鲁棒性,可抵抗外部干扰,例如液体飞溅或磨损。基于我们的策略,通过对缺陷的微酮阵列进行构图,进一步探索了具有方向分析物浓度的SERS基板。这项工作为在各种情况下的现实实施打开了一种方法。
摘要:无机腐蚀抑制剂通常用于减轻基于吸收的碳捕获植物中的严重腐蚀。但是,它们不是环保的,承担健康风险,损害环境,并使化学处理和处置成本高昂。因此,这项研究评估了氨基酸的腐蚀抑制性能,即cys- teine,目的是提供一种用于商业无机腐蚀抑制剂的环保替代品。电化学和减肥腐蚀测量结果表明,半胱氨酸在在所有过程工作条件下保护碳钢有效。在80℃,500 ppm半胱氨酸可以分别提供高达83%和99%的抑制效率,分别在静态和动态流条件下。改变半胱氨酸浓度,溶液温度和流量状态时,其抑制效率可以提高。半胱氨酸是一种阳极腐蚀抑制剂,并遵循Langmuir吸附等温线模型的自发性,吸热和物理和化学吸附。量子化学分析表明半胱氨酸由于其低能隙和高偶极矩而与金属表面具有较高的反应性。EDX分析揭示了金属底物上的显着硫含量,表明半胱氨酸的Mercapto组在在金属界面上形成有效的吸附层中起着不可或缺的作用。
抽象一些重金属,例如PB,CD,HG以及对人类极为危害的,因为它们的非生物性性质即使在非常低的暴露水平下也是如此。除了标准方法(例如电感耦合等离子体(ICP) - 质谱和ICP光学发射光谱法)外,还需要开发具有快速,准确和廉价要求的其他方法,以检测这些在水源中的有毒重金属离子。最近,由于高选择性,敏感性和低成本,多孔材料在阳极剥离伏安法中的应用引起了极大的关注。在本研究中,使用Zno-电化学降低的氧化石墨烯(ZnO/Ergo)修饰的玻璃碳电极(GCE)用于PD(II)和CD(II)的电化学检测。发现ZnO/ERGO-GCE的表面积为0.130 cm 2比裸机GCE的表面积(0.083 cm 2)大得多。对于ZnO/ergo-gce而言,电荷转移电阻从裸机GCE的3212Ω显着降低到924Ω。这些结果表现出ZnO/ Ergo修饰电极动力学的快速电子传递比。ZnO/ergo-gce与ERGO-GCE和Bare GCE相比,在检测Pb(II)和CD(II)方面表现出出色的电化学性能。峰值电流与2.5-200 µm范围内的CD(II)和Pb(II)浓度具有线性关系。CD(II)和Pb(II)的检测极限分别为1.69和0.45 ppb。此外,电化学传感器在实验研究中表现出极好的选择性,稳定性和可重复性,并且为检测痕量金属的巨大潜力开辟了巨大的潜力。
热力学:热力学,系统,热力学功能,系统状态,平衡,焓,在不同过程中完成的工作,C P,C V,绝热PVT关系,Carnot关系,熵概念,Clausius-Clapeyron方程式及其应用,Maxwell Relative,Maxwell Relative,Maxwell Relative,Maxwell Relative,Maxwell Relative,Maxwell Relative,Maxwell的概念,Maxwell,Maxwell,化学,化学,化学,化学。电化学和腐蚀:电化学细胞,电极电位的起源,标准电势,NERNST方程,EMF系列,可充电电池,腐蚀类型,电量串联,阳极和阳极反应,差异曝气细胞,腐蚀预防方法。动力学和溶液化学:化学反应动力学,第1秒,第2阶反应,可逆,连续和平行反应。稳态近似值,Arrhenius方程,链反应,照片化学反应,溶液化学和界面特性,真实和理想的解决方案,扩散,渗透,渗透压,渗透压,蒸气压的降低,沸点升高,冰点的抑郁,冰点的抑郁,异常的分子量,分子体重,缔合和分离。Chemical Bonding & Co-ordination chemistry: Bonding models in inorganic chemistry, Molecular orbital theory (MOT), Valance bond theory (VBT), and crystal field theory(CFT), Co- ordination chemistry: Co-ordination number, Chelate effect, EAN rule, splitting of ‘d' orbital in octahedral, tetrahedral and square planar complex, Example of Bio-inorganic & metals in biological系统工业化学:聚合物:聚合物的类型,聚合,应用,重要的合成聚合物。难治性和陶瓷材料:分类,制造和应用,水处理,空气污染和控制技术
电极中的界面不稳定性控制着锂离子电池的性能和寿命。虽然阳极上固体电解质界面(SEI)的形成引起了很多关注,但仍然缺乏对阴极上阴极 - 电解质界面(CEI)形成的阳极界面。为了填补这一空白,我们通过利用Operando数字图像相关性,阻抗光谱和冷冻X射线光电学光谱镜来报告有关磷酸锂,LifePo 4阴极的动态变形。Lifepo 4阴极在LIPF 6,LICLO 4或LITFSI中循环。在第一个周期之后,锂离子插入导致电化学菌株与(DIS)递送的状态之间几乎线性相关,而与电解质化学无关。但是,在LIPF 6中的第一个电荷 - 含有电解质的第一个电荷期间,在阳极电流上升开始时有明显的不可逆的正应变演化,并且在4.0V左右的电流衰减。阻抗研究表明,在相同的潜在窗口中表面阻力的增加,表明在阴极上形成了CEI层。CEI层的化学性质的特征是X射线光电子光谱。LIF,在第一个充电期间,电压以高于4.0 V的电压出现。我们的方法为阴极电极上CEI层的形成机理提供了新的见解,这对于为高性能电池开发可靠的阴极和电解质化学物质至关重要。
使用功能性选择性的固体电解质相(SEI)作为阳极保护层,可以有效地避免随后用于锂硫(Li-s)持续的不平坦锂电沉降。解决了传统刚性LIF SEI的单个功能,机械粉碎和剥离的问题,这是一种独特的功能选择的刚性刚性固化耦合偶联的Lif插入式涂纸(LIF-GN)sei,作为一个构建的保护,是由In-Operando X-RayChipRoscrospry(Xpsprace)(Xpsprace)构建的。由于LIF和石墨烯层的协同作用,这种插入功能性的SEI体系结构表现出巨大的弹性模量(刚性 - 可易加的耦合与浅的年轻人的模量(〜430 MPA)(约430 MPA),并且可以伴随〜20 gpa的模量,并且可以与〜20 gpa的模量),并且是机械强度的强度,并且是机械的强度李离子的前所未有的可行性。因此,通过原点内的/相对的拟合,有效地排除了从Lif-gn SEI中排除的,li 2 s成核测试和视觉渗透实验,这是有效的能力,可以有效地保护li and-li and-seprorchem deceled cormecor cormecor,li 2 s成核测试和视觉渗透实验具有深刻的能力。在300个循环中,在1 c和0.5 c时的高排放能力为1092 mAh/g)。2020年,由Elsevier B.V.和Science Press代表科学出版社和中国科学院化学物理学院发表。
摘要:激光铭刻的石墨烯(LIG)是一种用于微电子应用的新兴材料,用于开发超级电容器,软执行器,互动发电机和传感器。制造技术很简单,但是文献中没有很好地记录了LIG质量的批处理变化。在这项研究中,我们进行了实验,以表征在电化学传感中应用的LIG电极制造中的批处理变化。在聚酰亚胺膜上使用CO 2激光系统合成了许多批次36个LIG电极。使用角膜测量法,立体显微镜,开路电位计和环状伏安法进行了LIG材料。疏水性和电化学筛选(循环伏安法)表明使用商业参考和反电极时,LIG电极批处理变化小于5%。金属化的lig化导致峰值电流和特定电容(阳极/阴极曲线之间的面积)显着增加。但是,批处理变化增加到约30%。研究了两种不同的铂电沉积技术,包括电静态和频率调节的电沉积。研究表明,具有高特异性电容和峰值电流的金属级连杆电极的形成可能是以高批量变异性为代价的。文献中尚未讨论此设计权衡,如果需要进行大规模使用的扩展传感器设计,这是一个重要的考虑。该研究的数据集可通过开放访问存储库获得。这项研究为LIG材料特性的变化提供了重要的见解,以扩展LIG传感器的可扩展开发。需要进行其他研究来了解这种变异性的潜在机制,以便可以开发提高重复性的策略来改善质量控制。
八月 (No.8) 现场试验表明不锈钢液体肥料服务具有耐腐蚀性,Thomas F. Shaffer, Jr. ............. 8 通过薄膜持久性试验评估油田腐蚀抑制剂,Eben D. Junkin, Jr., D.R.Fincher ........................ 18 单乙醇胺溶液的抑制作用,J.R. Mottley, D.R.Fincher .................................................................... 20 抑制剂不适用于控制除冰盐引起的汽车腐蚀,J.D.Palmer ......................................... 31 更多关于抑制剂的文章 ........................................................ 33 改进的冷凝水试验加速抑制剂评估,Van Hong ......................................................... 36 油田盐水中亚硫酸盐除氧伴随的溶解度因素,C.C.Templeton, S.S. Rushing, Jane C. Rodgers ............................................................. 42 锅炉酸洗抑制剂评估,L.T.Overstreet ............................................................................. 48 改进的锅炉酸溶液可去除氧化物而不会产生沉淀物,L.G.McLaughlin ........................................... 52 实验室仪器测试压力和速度对抑制盐酸中油田管道腐蚀的影响,W.E.Billings, J.A.Know, David Morris ................................ 58 阳极保护可防止因腐蚀产生的氢气引起的磷酸罐爆炸,Olen L. Riggs, Jr. ................................................................ 63 煤焦油涂层测试:第 5 部分 - 海水中的阴极保护,W.F.Fair, Jr., R.B.Teel ................................. 66 腐蚀检测的无损检测方法,C.E.Lautzenheiser ......................................................... 72 钢或混凝土储罐内部的表面处理,NACE 技术委员会 T-6F 报告 ...................... 9 6 新的化学工艺涂层单个纤维 ................................ 77 用于测量井下腐蚀的环技术 .......................... 80 用于保护喷气式飞机尾翼的石棉毡 ................................ 82
摘要:研究粘稠的甘醇二甲醚溶剂可能有助于寻找安全的电解液以促进锂硫 (Li-S) 电池的应用。因此,本文对使用不易燃的四乙二醇二甲醚添加低粘度 1,3-二氧戊环 (DOL) 的电解液进行了彻底研究,以实现可持续的 Li-S 电池。该电解质的特点是低可燃性、约 200°C 的热稳定性、25°C 时离子电导率超过 10 − 3 S cm − 1、Li + 迁移数约为 0.5、电化学稳定窗口从 0 至约 4.4 V vs Li + /Li,Li 剥离沉积过电位为 ∼ 0.02 V。DOL 含量从 5 wt % 逐渐增加到 15 wt % 会提高 Li + 运动的活化能,降低迁移数,稍微限制阳极稳定性,并降低 Li/电解质电阻。该电解质用于 Li − S 电池,其复合材料由硫和多壁碳纳米管以 90:10 的重量比混合而成,利用了优化的集流体。对阴极的结构、热行为和形貌进行了初步研究,并在使用标准电解质的电池中使用。该电池可进行超过 200 次循环,硫负载增加至 5.2 mg cm − 2,电解质/硫 (E/S) 比降低至 6 μ L mg − 1 。随后将上述硫阴极和基于甘醇二甲醚的电解质组合成安全的 Li − S 电池,其循环寿命和输出容量与研究浓度范围内的 DOL 含量相关。关键词:Li − S 电池、甘醇二甲醚电解质、低可燃性、MWCNT、集电器、E/S 比
