Hope Microelectronics Co。 http://www.hoperf.com http://www.hoperf.cn
近年来,广播式自动相关监视 (ADS-B) 服务在民用和军用航空中变得至关重要,它可以跟踪受控区域地面上的飞机并为非受控空域的飞机提供服务。除了地面飞机探测之外,一些机构已经实施并验证了对受控区域和非受控区域的太空监视 [1][2]。对于科学航天器,特别是用于地球观测的纳米卫星 (<10kg),尺寸和重量是限制和影响设计的最主要因素,对于天线系统也是如此。因此,在使用天基监视系统时,优化的天线设计以检测飞机信号是强制性的。在本文中,我们提出了一种小尺寸、低轮廓的 L 波段天线,适用于太空操作并针对 ADS-B 信号接收进行了优化。设计要求和约束在第 II 部分中描述,模拟和测试结果在第 III 部分中给出。第 IV 部分总结了这里提出的工作。
近年来,广播式自动相关监视 (ADS-B) 服务在民用和军用航空中变得至关重要,它可以跟踪受控区域地面上的飞机并为非受控空域的飞机提供服务。除了地面飞机探测之外,一些机构已经实施并验证了对受控区域和非受控区域的太空监视 [1][2]。对于科学航天器,特别是用于地球观测的纳米卫星 (<10kg),尺寸和重量是限制和影响设计的最主要因素,对于天线系统也是如此。因此,在使用天基监视系统时,优化的天线设计以检测飞机信号是强制性的。在本文中,我们提出了一种小尺寸、低轮廓的 L 波段天线,适用于太空操作并针对 ADS-B 信号接收进行了优化。设计要求和约束在第 II 部分中描述,模拟和测试结果在第 III 部分中给出。第 IV 部分总结了这里提出的工作。
近年来,广播式自动相关监视 (ADS-B) 服务已成为民用和军用航空的必备服务,它可以跟踪受控区域内的地面飞机,并为非受控空域的飞机提供服务。除了地面飞机探测之外,一些机构还实施并验证了对受控区域和非受控区域的太空监视 [1][2]。对于科学航天器,尤其是用于地球观测的纳米卫星 (<10 公斤),尺寸和重量是限制和影响最大的设计驱动因素,即使对于天线系统也是如此。因此,在使用太空监视系统时,优化的飞机信号检测天线设计是强制性的。在本文中,我们提出了一种小尺寸、低轮廓 L 波段天线的方案,适用于太空操作,并针对 ADS-B 信号接收进行了优化。设计要求和约束在第 II 部分中描述,模拟和测试结果在第 III 部分中介绍。第 IV 部分总结了本文介绍的工作。
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
开发了一种由轨道飞行器牵引的长尾天线动力学模型,然后研究了几种控制导线稳态形状和风梯度引起的振荡的候选方案。使用具有自由/固定的经典振动链开发了计算机模拟
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。