发展 罗克韦尔柯林斯致力于为您提供创新可靠的 HF 解决方案。无论是全新的全集成高频数据链路 (HFDL) 无线电、低成本 HFDL 升级套件还是数字调谐天线耦合器,罗克韦尔柯林斯都能将您的 HF 投资提升到更高的性能水平。规格 频率范围 2.0 至 29.9999 MHz 连续 射频功率输入 工作:400 W PEP + 1 dB 调谐:平均最大 85 W 调谐时间 初始:2 至 4 秒(典型值),7 秒(最大值) 快速调谐:250 毫秒 调谐精度 1.3:1 VSWR 最大值 主电源 115 V ac,400 Hz 占空比 连续,平均功率为 125 W 调制类型 SSB、AME、CW 和 PSK 温度范围 -40°C 至 +70°C 工作 振动 D0-160C Cat C、Y、L 冲击 6 G,持续时间为 11 MS 碰撞安全性 15 G 峰值,持续时间为 11 MS 高度 非加压、非温控,最高可达 50,000 英尺 湿度 0% 至 95%,65°C 至 38°C,暴露 240 小时 尺寸 高度:最大 7.52 英寸宽度:最大 5.02 英寸 长度:15.72 +/- 0.06 英寸 重量:最大 17 磅
引言 可部署的空间网状反射器天线已得到广泛应用,孔径为 10 - 20 m[1-3]。标准的可部署结构是 AstroMesh,它由双曲缆网组成,由可部署周边桁架支撑[4,5]。这种特殊的反射器设计已成功实现质量和体积效率[6-9]。可部署结构必须满足运载火箭的质量和体积限制,以及发射期间动态环境施加的负载限制。使用现有的运载火箭无法发射存放高度超过 20 m 的结构[10]。因此需要在太空建造极大的结构。许多研究人员已经研究了空间组装 (ISA) 技术。ISA 需要:功能元素的模块化和在太空组装单独模块的策略。开发 ISA 架构将为在太空环境中建造大型结构提供新方法[11,12]。使用 ISA 建造大型功能结构的概念[10]包括 RAMST[13]和 ALMOST[14],这两个概念都是在太空组装的模块化空间望远镜。在当前的研究中,我们考虑在太空中建造具有特定架构的反射器,如图 1 所示。反射器由两个相同的近似于抛物面的索网组成。反射面连接到前网上。拉力带安装在前后网之间,对电缆施加预应力。前后网都连接到周边桁架。反射器的设计类似于可展开的 AstroMesh,但概念实现现在支持在太空中组装,而不是从收起配置展开。本文的结构如下:我们首先设计反射器的几何形状和结构。然后计算孔径高达 200 米的质量和存放体积,以评估所提议的反射器的发射极限。然后,我们提出了一种空间组装方案,该方案能够使用集中式机器人系统组装大型反射器。实验室规模的原型用于演示所提议的组装程序。
在卫星通信中,链路边缘以及天线辐射特征是确保在空间和接地段之间提供牢固的通信联系的关键因素。用于遥测/遥控器和有效载荷数据传输,ISOFLUX天线被广泛用于卫星通信系统中,以有效地引导电磁波。为了降低复杂性和制造成本,首选简单的天线结构。在这项研究中,经过详细的文献调查,已设计了Polyrod天线,用于在低地球轨道卫星通信子系统的空间段中使用。所提出的polyrod天线在天线的60 0高度角下具有最大增益。此外,其阻抗带宽为750MHz(11%),足以在高数据速率发射器中使用。通过使用CST微波工作室TM,这是一种可商购的3-D电磁时间域求解器,方向性,增益,轴向比率,用于X波段的高程平面以及回报损失特征。基于获得的结果,可以在需要圆锥形束辐射图案的情况下使用设计的polyrod天线。
本出版物是六份目录之一,旨在以易于访问的形式收集所有类型军用天线的数据。此类收集的想法源自军用天线组(更广为人知的名称是地面、船舶和 ISAG)。ISAG 是一个非正式团体,由空军、陆军和海军实验室组成,他们定期开会讨论相互的天线问题。除该小组认可的天线外,资金专门用于导弹用途。由空军和陆军批准,这项工作是在空军管理下启动的,编号为第 6 卷 - 秘密地面、舰船和空中合同 AF 19(604)-4101。,工艺天线(秘密):全部
“IFF”或“雷达,信标”不适用,地面控制拦截(GCI):见“搜索,地面”或“搜索,空中”和“测高”。 指导:一个通用术语,仅在无人驾驶载体上发送信号到无人驾驶载体时使用,该术语指的是指导和调节无人驾驶载体上的设备,
摘要 — 本文介绍了一种基于纯幅度数据的便携式天线诊断和特性分析系统。通过在被测天线 (AUT) 孔径前移动由运动捕捉系统跟踪的手持式探头来获取纯幅度样本。使用无相位源重构方法处理获取的测量值,以计算 AUT 孔径上的等效电流分布。最后,通过评估相应的辐射积分可以获得 AUT 的辐射图。与以前的工作不同,使用纯幅度数据避免了对相位参考的需求,为在操作条件下诊断和特性分析天线铺平了道路。这一事实,加上手持功能,使该系统非常方便测量已部署和机载天线。此外,这些纯幅度采集还简化了所需的硬件。该系统已通过从 Ka 波段到 300 GHz 的宽频率范围的测量得到验证。尽管不能期望达到与实验室条件下(包括无回声环境和高精度定位器)相同的精度,但该系统表现出了出色的故障检测能力,例如错误的幅度/相位分布,以及对远场的合理估计。
摘要:存在不同的可植入天线设计,可以根据使用域和植入空间建立与植入设备的通信。由于其性质和目的,这些天线具有许多针对各种特征的标准,例如带宽,多播行为,辐射模式,增益和特定的吸收率(SAR)。这在没有在这些关键参数的任何一个重要的情况下实现令人满意的结果时提出了挑战。此外,许多现有设计不遵循特定的方法来获得结果。测量这种制造结构的不同参数需要特殊的条件和特殊环境,以模仿应该放置的组织。在此类问题上,使用生物学或合成幻象的使用被广泛用于验证模拟中所述的内容,并且存在许多公式来创建此类幻影,每种幻象都有其优势和缺点。在本文中,由Koch分形结构的第一次迭代得出的微型双带结构旨在用MIC(医疗植入物通信系统)和ISM(工业,科学,科学,医学)2.4 GHz频段操作皮肤下方2 mm的皮肤下方2 mm。设计的目的是从具有某些行为的常用形状中得出结构,同时保持微型化,并轻松设计双束带不可原属的天线。多个频带用于多元化用途,因为诸如MICS频段之类的频段主要用于遥测。与文献中发现的各种结构相比,该结构的特征不仅是其低调的特征,其尺寸为17.2×14.8×0.254毫米3,而且其设计易于设计,谐振频率的独立转移以及对匹配电路的需求不足和匹配销和缩短销(通过)。它表现出令人满意的性能:MICS频段中23 MHz的带宽和ISM 2.4 GHz频段附近的190和70 MHz,并且分别在Azimuth和高架辐射模式中的后一种− 18.66和-17 dBi的频带中测量的增益。为了验证天线在模仿环境中的特性,探索了文献中发现的两个简单的幻影公式并进行了比较,以便在精确性和易于制造方面识别最佳选择。
摘要:设计并制作了一种基于复合右手-左手 (CRLH) 原理的小型零阶谐振天线,在 30 GHz 下无需金属通孔即可实现贴片状辐射。将两个 CRLH 结构的镜像连接起来以设计无通孔天线。研究了等效电路、参数提取和色散图,以分析 CRLH 天线的特性。制作了天线并通过实验验证。测得的天线在 30 GHz 下的实际增益为 5.35 dBi。设计的天线在 10 GHz 带宽内没有杂散谐振。利用所提出的 CRLH 天线和 Butler 矩阵设计了一个无源波束形成阵列。采用基板集成波导来实现 Butler 矩阵。CRLH 天线连接到 4×4 Butler 矩阵的四个输出。对于馈送 CRLH 天线的 4×4 Butler 矩阵,从端口 1 到端口 4 的激励,扫描角度分别为 12 ◦、−68 ◦、64 ◦ 和 −11 ◦。
在底部的铜接地处,厚度为0.035 mm。同轴电缆用于在一个在50Ω上提供更好匹配的阻抗的点来喂食天线。这种结构是用商业软件HFSS v19。模拟的简单微带天线的模拟结果,散射系数(S 11)而没有加载超材料的散射系数在9 GHz时为-36.33 dB。超材料基本上是人为设计的周期性结构,与常规材料相比,具有不同的电磁特性。me-Tamaterials具有负折射率,这在自然杂物中未发现,这是Veselago在1968年首次假设的[6] [6]。这些设计的周期结构在某些频率上引起共鸣,并能够以光的形式吸收电磁辐射。基于ε(介电常数)和μ(渗透率)值的负折射率的理论背景。以:
摘要 近年来,流体天线系统 (FAS) 作为 6G 无线网络的潜在竞争者而备受关注。流体天线多址 (FAMA) 是一种新技术,它允许每个用户通过单 RF 链端口流体天线不断移动到信号干扰比 (SIR) 最强的位置。FAMA 的研究工作主要集中于从多个方面提出与增强 FAMA 相关的模型和解决方案,包括 FAS 系统、增强正交和非正交多址、信道建模、分集增益、人工智能 (AI) 技术、FAMA 与其他 6G 新兴技术如智能反射面 (IRS)、多输入多输出 (MIMO)、太赫兹 (THz) 通信等。目前尚无涵盖 FAMA 所有这些重要方面的调查。基于几个关注点,本研究提出了 FAMA 的综合分类。首先,讨论 FAS 系统。然后,介绍 FAMA 机制及其信道建模和分集增益。随后,我们将 FAMA 与 IRS、MIMO、THz 通信等其他新兴技术相结合,并提供了增强 FAMA 的 AI 方法。最后,我们介绍了各个领域进一步研究的潜在研究方向。在设计和增强 FAS 系统、通过 FAMA 促进通信以及将其与 6G 的其他尖端技术相结合时,本文可以作为参考或指导。