在申请之前,申请人应熟悉这一重大挑战的支持文件,包括Wellcome,Gates Foundation和Novo Nordisk Foundation的条款和条件,规则和指南,申请说明以及常见问题。概述在2021年,抗菌耐药性(AMR)与470万死亡有关,主要影响低收入和中等收入国家(LMIC),但2024克的报告预测预测表明,针对GRAM-负细菌的新型抗生素的发展将导致AMR Burden的减少。为了应对这一全球卫生优先事项,Novo Nordisk Foundation(NNF),Wellcome和Gates Foundation(GF)共同发起了一项新的计划,革兰氏阴性抗生素发现Innovator(GR-ADI),以推动革兰氏阴性病原体的早期药物发现创新。GR-ADI将充当一个财团,在多个资助者,研究机构和行业合作伙伴之间共同工作。财团将通过对提案(RFP)的巨大挑战请求(RFP)形成,重点是发现直接作用的小分子抗生素具有针对肠杆菌科的广谱活性,使用Klebsiella spp。作为启动发现程序的病原体。背景细菌AMR现在是全球死亡的第三个领先原因,是缺血性心脏病和中风背后的。新的抗生素发育的最新进展一直源于已建立的药物类别的逐步改善,例如已经受到抗性影响的β-内酰胺抗生素。WHO已因革兰氏阴性细菌而批准了威胁生命的社区和医院感染,强调了耐碳酸碳纤维的肠杆菌科(CRE)(包括K. pneumoniae and E. coli和E. coli)和acinetobacter cinetobacter baumannii(Crab)(Crab)(Crab)最重要的AMR AMR健康威胁。开发中很少有针对一种新的作用方式,这对于抗击对现有抗生素类型的细菌的持续出现至关重要。尽管有多种因素阻碍了多样化的抗生素管道的发展,但关键因素是缺乏协调的投资和协作努力。
摘要:鼻塞炎是寻求医疗咨询的患者中最常见的疾病之一。鼻窦炎是一群疾病,可能是急性或慢性病。关于鼻孔炎的当前知识状态列出了欧洲关于鼻鼻炎和鼻息音2020年的欧洲立场论文的建议(EPOS 2020)。在鼻窦炎症变化的背景下,越来越多的关注对微生物群的状况。在抗生素治疗过程中,过度处方抗生素对细菌耐药性的增加以及微生物群组成障碍的显着变化也存在负面影响。由于急性鼻窦炎的最常见病因是病毒,因此在简单鼻窦炎中使用抗生素是没有道理的。寻求新的治疗溶液,包括使用草药。EPOS 2020文档建议在简单的急性鼻炎中使用BNO 1016。新的治疗模型还考虑了生物药物的使用,尤其是在治疗慢性鼻塞炎方面。
我们的目标是提供最佳的服务,员工将很乐意回答您可能遇到的任何问题。如果您对您的访问有任何建议或评论,请与工作人员交谈,或致电020 3312 7777(10.00 - 16.00,星期一至周五)与患者建议和联络服务(PALS)联系。您也可以通过imperial.pals@nhs.net向朋友发送电子邮件,朋友团队将聆听您的疑虑,建议或查询,并且通常能够代表您解决问题。另外,您可能希望通过联系我们的投诉部门:投诉部:索尔顿大厦四楼,圣玛丽医院,伦敦圣玛丽医院,伦敦W2 1NY电子邮件:iChc-tr.complaints@nhs.net@nhs.net电话:020 3312 1337 /1349
什么是抗生素?抗生素是与细菌引起的感染作用的药物,而不是病毒。什么是抗生素抗性生物?抗生素耐药性是细菌抵抗抗生素作用的能力。当细菌以某种方式变化或阻止旨在治愈或预防感染的药物的有效性时,就会发生抗生素耐药性。细菌生存并继续繁殖,从而造成更多伤害。抗生素耐药的生物如何形成?抗生素使用促进抗生素耐药细菌的发展。每当一个人服用抗生素时,敏感细菌被杀死,但耐药细菌可能会生长和繁殖。抗生素的重复使用和不当用途是抗药性细菌增加的主要原因。哪种类型的健康问题是由抗生素抗性生物引起的?由抗性微生物引起的感染通常无法对标准治疗做出反应,从而导致更长的疾病,更高的医疗保健成本和更大的死亡风险。具有耐药性感染的人可以将抗性感染传递给他人。一种难以治疗的疾病可以从一个人到一个人,
抗菌剂,也称为化学疗法,旨在通过抑制或杀死感染微生物,同时最大程度地减少对宿主的伤害来对抗感染。抗生素是一种由微生物产生的一种抗生素,可有选择地抑制或杀死低浓度的其他微生物的生长或杀死其他微生物。该定义不包括较高生物体产生的物质。可以根据其化学结构,作用机理,靶向生物类型,活性谱和来源分类。某些抗菌作用直接在细菌细胞壁上发挥作用,或者必须通过它,然后才能在细胞内水平破坏细菌代谢。类红霉素这样的抗生素可以靶向革兰氏阳性细菌,但对革兰氏阴性菌的含量无效,除非在极少数情况下。大多数细菌基于实验室中使用的染色技术属于这两类。革兰氏阴性物种,即使用最少的营养迅速繁殖,并且在医院和革兰氏阳性对应物的同时也发现。革兰氏阳性生物的例子包括金黄色葡萄球菌,化脓性链球菌和肺炎链球菌,而革兰氏阴性菌的葡萄球菌包括大肠杆菌,Neisseria Gonorrhea和Klebsiella。厌氧菌可在没有游离氧气的情况下生存,但需要特殊的条件才能在实验室中生长。但是,在某些情况下,它们会引起严重的感染。使用抗菌药物的问题之一是毒性,在注射部位或影响各种器官的全身毒性上可能表现为局部刺激。一些常见的分类包括: *磺酰胺和相关药物 *奎诺酮,如环丙沙星 *β-乳糖抗生素,例如青霉素和头孢菌素 * tetracyclines * tetracyclines,包括强力霉素 *氨基糖苷,包括氨基糖苷,包括链霉菌素和雌雄同体,包括Er雌激素 * Macrolosiv,酸毛霉素,酸糖尿病,酸糖苷,酸糖苷,酸糖尿病红唑和氯咪唑抗生素也可以根据其作用机制进行分类: *抑制细胞壁合成,例如青霉素和头孢菌素 *抑制蛋白质合成,包括四环素和红霉素在内*也可以根据它们主要针对的生物类型来分类: *抗菌剂,包括青霉素和氨基糖苷 *抗真菌药物,例如抗菌剂 *抗真菌药物,例如ZIDOVUDINE和ACYCLOVIR抗菌抗菌剂,也可以根据其靶向: *抗菌剂进行分类。抗吡喹剂,例如氯喹和甲硝唑 *抗智能剂,例如甲苯二唑和丙ama剂,也可以根据其活性谱进行分类: *狭窄的 - 谱抗微生物剂,例如青霉素g和erythromycin and themimictram and themicramic and themicriame and themicriame andimicrials,themicriame themiccl themiccl tatect themiccl themicrials themiCrimicClateCcltic themiCrimicClateCclticramic tatect the最后,抗菌物质通过迅速杀死细菌或阻止其复制来起作用。氯霉素会导致骨髓抑郁症,而四环素可能会损害肝脏和肾脏。抗菌剂还会引发无法预测且不与剂量有关的超敏反应。这些反应从轻度皮疹到严重的过敏性休克。它们可能是由青霉素,头孢菌素,磺酰胺或氟喹诺酮引起的。另一个主要问题是耐药性,随着时间的流逝,微生物对抗菌药物产生无反应性。这可能是由于某些微生物中的自然耐药性或由于这些药物长时间使用而获得的耐药性。超级感染是指抗菌治疗后新感染的发展。是因为人体的正常微生物菌群发生了改变,导致失衡会导致致病生物更容易确定自己。的例子包括念珠菌过度生长,这通常与四环素和氯霉素等广谱抗生素有关。为了最大程度地减少超级感染,尽可能使用特定的抗菌药物至关重要,避免使用这些药物治疗微不足道的感染,而不是不必要地延长抗菌治疗。使用抗菌剂会导致各种问题,例如肠道菌群被破坏时的维生素缺乏。这种破坏可能是由于某些改变肠道平衡的药物的使用可能会导致这种中断。此外,抗菌药物可以掩盖感染,暂时抑制症状,但可能导致后来更严重的结果。例如,将单剂量的青霉素用于淋病,可能会掩盖梅毒或TB,这是由于短期链霉素引起的。磺酰胺是一类较旧的抗菌剂,由于细菌耐药性和不良副作用的发展而被大大替换。这些化合物主要用作抑制抑制剂,抑制各种细菌的生长,包括革兰氏阳性和革兰氏阴性生物。其作用背后的机制涉及细菌干扰叶酸的合成,而人类可以从饮食中利用预先形成的叶酸。磺酰胺以不同的形式可用,每种都具有其独特的特征。可以根据其作用方式将它们广泛分为三个主要组:(1)抑制细胞壁合成,包括甲基核苷和奥沙西林等青霉素; (2)抑制蛋白质合成; (3)抑制细菌核酸合成。
卫生部长致辞 ................................................................................ i 致谢 ................................................................................................ ii 编辑团队 ................................................................................................ iv 首字母缩略词和缩写 .............................................................................. v 国家抗生素指南介绍 ...................................................................... viii 血源性感染和其他全身性综合症 ............................................................ 1 小儿骨与关节感染 ...................................................................................... 19 成人骨与关节感染 ...................................................................................... 26 心血管感染 ............................................................................................. 33 中枢神经系统感染 ............................................................................................. 47 牙齿和口腔感染…………………....………………...................... 55 胃肠道感染 …………………………………...................... 61 眼部感染 ……………………………………………………………........................ 74 上呼吸道感染 …………………………….…………………........................ 86 下呼吸道感染 …………………………………….…………........................ 105 小儿皮肤和软组织感染 …………………….................................. 124 成人皮肤和软组织感染 …………………………................................ 150 泌尿道感染 …………………………………….……………........................ 170 公共卫生计划 丝虫病 …………………………………………………………………………..…… 183麻风病……………………………………………………………………………….. 184 疟疾……………………………………………………………………………….. 186 血吸虫病…………………………………………………………………….….… 195 性传播感染………………………………………………………… 196 结核病……………………………………………………………………… 219 手术预防……………………………………………………………….……………........................ 230
抗生素被广泛用作人类的药物,也用作生长运动,预防疾病和治疗的牲畜。然而,对抗生素的普遍用法导致了对全球挑战的关键挑战,从而提出了有关抗生素耐药细菌和抗生素 - 耐药基因的问题。存在抗生素耐药细菌和抗生素耐药基因的威胁越来越多,影响了治疗对传染病的有效性。预测表明,到2050年,可能归因于携带抗生素抗性基因的病原体死亡。因此,针对去除残留抗生素,消除抗生素耐药菌的方法的迫切需求以及在释放到环境之前,在废水处理和牲畜废物管理之前消除了抗生素耐药基因。这种补救方法旨在减轻由抗生素引起的自然细菌对天然细菌的影响压力,并减轻潜在的抗生素抗性菌株的出现。本评论论文旨在概述当前状态和
尼日利亚扎里亚 SHIKA 艾哈迈杜贝洛大学教学医院患者伤口相关细菌的分离、鉴定和抗生素敏感性模式* Abdullahi B. 和 Lawal FB 尼日利亚扎里亚艾哈迈杜贝洛大学微生物学系 *通讯作者 电子邮箱:albishir13@gmail.com 电话:+2348054527359 摘要 伤口感染会影响生活质量,并降低伤口愈合率。本研究旨在从伤口中分离细菌并确定其抗生素敏感性模式。共采集了尼日利亚扎里亚艾哈迈杜贝洛大学教学医院伤口患者的 100 份伤口拭子样本。对样本进行培养,并使用生化测试鉴定所得分离物。使用琼脂纸片扩散法对鉴定出的细菌进行抗生素敏感性试验。在收集的 100 个伤口样本中,有 43 个感染了细菌;导致细菌性伤口感染的总患病率为 43%。在 43 种分离的细菌中,58.1% 为金黄色葡萄球菌,18.6% 为克雷伯氏菌属,而 23.3% 被鉴定为假单胞菌属。女性患者细菌性伤口感染的患病率(47.3%)高于男性患者(37.8%)。21-40 岁年龄组的感染患病率最高(48.3%),10-20 岁年龄组的感染患病率最低(33.3%)。所有风险因素均与感染无显著相关性(p>0.05)。所有分离株对氧氟沙星均 100% 敏感。所有分离株对青霉素均 100% 耐药。所有假单胞菌属均为 100% MDR。金黄色葡萄球菌是最常见的细菌,氧氟沙星是治疗伤口感染的首选药物。关键词:伤口;细菌感染;抗生素敏感性;MDR 简介伤口是皮肤破裂并因皮肤完整性丧失而暴露的皮下组织,为微生物的定植和增殖提供了潮湿、温暖和有利的环境(Esebelahie 等人,2013 年)。皮肤容易受到伤害、划伤并与外界环境接触,因此更容易受到病原体的定植(Simões 等人,2018 年)。由于伤口定植最常见的是多种微生物,涉及可能致病的不同微生物,因此任何伤口都存在感染的风险(Simões 等人,2014 年)。患者所呈现的伤口因情况而异,包括急性手术伤口、意外事故后发生的创伤性伤口、烧伤伤口或慢性伤口,如糖尿病足、腿和压疮。所有伤口都受到微生物的污染,这些微生物是皮肤腐生菌群的一部分,这些微生物的类型和数量因伤口而异(Cooper 和 Lawrence,1996 年)。
摘要:结核分枝杆菌(MTB)是一种已知的细菌,可以靶向,感染和破坏肺部细胞以及体内的结缔组织。该细菌在全球范围内普遍存在,已感染了当前世界人口的四分之一,成为历史上最成功的病原体之一。由于其作为空降病原体的极端传播速率,MTB菌株已被抗生素(例如利福平和异念珠菌)处理,这些抗生素抑制了人体细菌感染。这些第一轮药物仍然是减慢病原体和杀死病原体的成功机制,特别是通过利福平抑制RNA - 聚合酶和以异oni氮的停止形成细菌细胞壁的能力。然而,由于最近发现了多药耐药性结核病菌株,TB已被证明是威胁,使这些第一轮药物无效。本研究的主要目标是1)回顾有关结核病的最新发表文献,2)检查突变对结核病菌株中抗生素耐药性的作用,3)分享我们关于全球结核病治疗的成功和挑战的综合。我们的研究是通过NCBI Genbank中可用的数据和文献综述的。为了实现这些目标,我们回顾了有关结核分枝杆菌的相关文献,以收集病理生理数据,结核病突变的趋势以及当今该疾病如何在全球范围内不断流行的应用。我们从国家医学图书馆的GenBank收集了抗生素响应式RPO B基因序列,以评估四个国家的特定结核病的突变。我们发现,随机突变引起了具有有效抗生素耐药性的结核病菌株的演变,并且药物的选择性可以鼓励这些抗生素耐药基因。新药,例如Bedaquiline,进行了大量研究,但有效地发现了针对这些耐药性分枝杆菌的新靶标。但是,尽管有一些新开发的药物,但MDR结核病仍然仍然是一个相当大的威胁。
抗生素耐药细菌的兴起是全球健康问题,由于这些抗性感染,到2050年,每年预计每年将超过100万人死亡。世界卫生组织(WHO)已经确定了十二种关键的抗生素病原体,包括抗性霉素肠球菌(VRE),例如肠球菌(E.粪便)。vre引起严重的医院可获得的感染,例如心内膜炎和败血症,并对多种抗生素产生了抗药性,强调了对新的抗菌治疗的迫切需求。应对这一危机,由日本千叶大学科学研究生院的Takeshi Murata教授领导的研究人员团队发现了一种有希望的新化合物V-161,有效地抑制了VRE的增长。他们的研究检查了在这些细菌中发现的一种称为Na +传输V-ATPase的钠泵化酶,该酶在E. hirae中发现,E. hirae是粪肠球大肠杆菌的亲戚,用作研究酶的更安全,更可拖动的模型。该团队由Chiba University科学研究生院的第一作者Kano Suzuki助理教授组成;奇巴大学医学真菌学研究中心的Yoshiyuki Goto副教授;高能加速器研究组织结构生物学研究中心的Toshiya Senda教授和Toshio Moriya副教授;国立自然科学研究所的分子科学研究所的Ryota Iino教授。Murata博士解释说:“这种酶有助于将钠离子从细胞中泵出,有助于VRE的生存,尤其是在像人类肠道这样的碱性环境中。这项研究于2024年11月21日在自然结构和分子生物学上发表,假设Na +传输V- ATPase在开发抗生素的发展中可以发挥关键作用,该抗生素专门针对VRE而不影响有益细菌。这种酶在像乳杆菌等有益细菌中不存在,尽管人类具有相似的酶,但它具有不同的功能。这使得VRE中的Na +传输V -ATPase成为选择性抗菌治疗的理想目标。”他进一步指出:“我们筛选了70,000多种化合物,以鉴定酶Na + -V -ATPase的潜在抑制剂。在其中,V-161是一个有力的候选人,在碱性条件下降低VRE生长方面表现出显着的有效性,这对于这种抗性病原体的生存至关重要。”此后,进一步的研究表明,V-161不仅抑制了酶功能,而且还降低了小鼠小肠中的VRE定植,突出了其治疗潜力。这项研究的主要发现是对酶的膜V 0结构域的高分辨率结构分析,揭示了对V-161如何与之结合并破坏酶功能的详细见解。v-161靶向酶的C形环与A-subunit之间的界面,有效地阻断了钠转运。这种结构信息对于理解化合物的起作用至关重要,并为开发针对该酶的药物提供了基础。Murata博士解释说:“从结构分析获得的发现可用于开发其他难治性细菌的治疗方法,也为制定未来药物开发的重要准则构成了基础。”他进一步补充说:“我们希望不仅为VRE进行创新治疗的发展,而且多种耐药细菌将大大推动对耐药性感染的治疗。”