Credit-2:免疫细胞和器官2.1。免疫细胞的结构,功能和特性 - 干细胞和血肿2.2。淋巴谱系细胞(T细胞,B细胞,NK细胞)2.3。髓样谱系细胞(巨噬细胞,嗜中性粒细胞,嗜酸性粒细胞,嗜碱性粒细胞,肥大细胞,树突状细胞)2.4。中央和周围免疫器官。2.5。补体系统和激活途径(经典,替代和凝集素途径)信用-3:抗原和抗体3.1。抗原,结构和类型的抗原 - 内源性和外源性和超级抗原3.2。触觉,佐剂及其类型3.3。抗体,结构,类型,功能和特性3.4。抗体决定因素(同种型,同种型,白痴)3.5。VDJ重新排列信贷4的概念:免疫学技术4.1。抗原和抗体反应的简要介绍 - 补体固定,中和,凝集反应4.2。降水反应及其类型4.3。诊断重要性 - ELLSA,R1A,VDRL和WIDAL测试4.4的免疫测定。流式细胞仪和荧光免疫印迹 - 超敏反应4.5。产生单克隆和多克隆抗体及其应用
疫苗的主要成分是抗原,即接种疫苗所针对的少量细菌或病毒。抗原是疫苗的一部分,可促使您的免疫系统产生抗体来对抗未来的感染。为了确保疫苗不会导致您想要预防的疾病,抗原会被改变或减弱。在 COVID-19 疫苗等 mRNA 疫苗中,抗原不是减弱的病毒或细菌,而是一小段称为信使 RNA (mRNA) 的遗传物质。这种 mRNA 为您的细胞提供指令,使其产生病毒表面的无害刺突蛋白,从而触发免疫反应,让您的身体做好对抗实际病毒的准备。与我们吃的许多食物和喝的许多饮料一样,疫苗也含有少量其他成分,每种成分都有特定的必要功能。这些成分可以添加到疫苗中,使其更有效、更无菌和/或更安全。这些额外的成分已经过研究,在疫苗中使用的量对人类是安全的。
有证据表明,针对 B 组脑膜炎球菌感染的 4CMenB 疫苗也能在一定程度上预防淋病。3,4 使用该疫苗可减少诊断和住院。5 Avacc 12 利用了这种保护机制。该疫苗使用 Intravacc 的脑膜炎奈瑟菌 B 血清群平台(该平台与淋病奈瑟菌具有 90% 的整体同源性并共享许多外膜抗原)来诱导对淋病的交叉保护。脑膜炎奈瑟菌经过额外改造,可以用淋球菌抗原替代脑膜炎抗原,从而进一步提高疫苗的有效性。
预防性癌症疫苗是减少肺部恶性肿瘤的一种有前途的方法。大多数正在开发的癌症疫苗通常需要强大的佐剂来增强免疫反应,因为疫苗中针对的大多数肿瘤抗原与“自身”抗原相同 (1)。然而,如果疫苗针对仅由肺癌呈现的多种“非自身”抗原,则肺癌疫苗的功效将显著提高 (2)。新出现的证据表明,肿瘤细胞和胚胎干细胞 (ESC) 具有共同的抗原,这些抗原被视为“非自身”抗原,因为它们不在正常成人组织中表达 (3,4)。基于恶性细胞和 ESC 之间的抗原相似性,研究人员开发了一种预防性肺癌疫苗,由辐照的完整小鼠 ESC 和表达免疫刺激佐剂粒细胞-巨噬细胞集落刺激因子 (GM-CSF) 的小鼠成纤维细胞组成 (5)。为了证实 ESC 具有癌症预防能力,最近有两项研究表明,经辐射的诱导性多能干细胞 (iPSC) 与佐剂 CpG 一起可作为肿瘤疫苗,引发针对移植乳腺癌、间皮瘤、黑色素瘤和胰腺癌的抗肿瘤反应 (6,7)。尽管基于 ESC 或 iPSC 的疫苗有望引发抗肺癌免疫反应,但这种疫苗在人体应用方面有两个明显的挑战需要克服:首先,尽管经过辐射,但施用完整的 ESC 或 iPSC 会增加胚胎瘤/畸胎瘤形成的风险,以及由 ESC 或 iPSC 固有的致瘤性和免疫原性引起的自身免疫 (8)。此外,使用成纤维细胞作为佐剂 GM-CSF 的来源过于复杂。为了克服这些障碍,我们开发了一种替代预防性疫苗,该疫苗由小鼠 ESC 的外泌体组成,这些外泌体经过改造可产生 GM-CSF(ESC-exo/GM-CSF)。这种独立的、相对稳定的基于外泌体的疫苗可显著减缓或阻止皮下植入的肺癌肿瘤的生长 (9)。据报道,外泌体是从各种细胞类型中释放出来的小膜囊泡,可作为细胞间通讯的重要介质,并在许多(病理)生理过程(包括肿瘤发生)中发挥基本作用 (10)。外泌体已被改造为增强对癌症的免疫反应,可作为治疗药物或预防疫苗 (11,12)。作为细胞-
摘要:生物材料的快速发展以及纳米技术和生物技术的出现,为新型肿瘤免疫疗法的突破提供了可能。可以通过选择适当类型和数量的抗原和佐剂数量来构建肿瘤疫苗,从而诱导强,持久和多目标免疫反应,这是积极重塑抗肿瘤免疫状态的关键策略。在本报告中,基于各种纳米结构和生物材料探索了各种肿瘤疫苗和免疫治疗药,以探索用于肿瘤免疫微环境调节,尤其是基于生物膜材料,例如外泌体,细菌外膜和分类疗程,以满足不同的临床需求和使用情况。响应肿瘤异质性和动态变化,涵盖了不同形式的肿瘤抗原和辅助剂,例如肽,mRNA和细胞膜抗原以及疫苗载体。将在演讲中讨论以下方面,包括对影响肿瘤免疫疗法的多种因素,具有广泛适应能力的肿瘤疫苗的设计,破坏免疫抑制作用,并改变了人体免疫系统的抗肿瘤能力,从耐受性到激活,以最大程度地衡量身体的免疫系统的潜在,以达到较大的挑战的潜在,以使有效的有效性的有效性的有效性
有毒T细胞。8因此,必须通过阻断自反应性T细胞的激活来调节对自我抗原的免疫反应,但是自反应性B细胞仍应活跃,并通过有效的T细胞激活引起(图1)。9在人类免疫耐受性系统中,免疫耐受性的主要机制是T细胞耐受性,其中包括中央和外围耐受性。中央公差称为“负选择”。在胸腺中T细胞的开发过程中,去除主要组织相容性复合物(MHC)上携带自肽的T细胞。在中央公差之后,外周耐受性,称为“厌食”,是易于耐受性的第二个分支。尤其是在T细胞和抗原呈递细胞(APC)的相互作用中,如果没有CD28-B7的相互作用,则无法激活T细胞。10要激活B细胞以产生抗体,CD-4阳性细胞分化为血浆和内膜细胞需要其分化。由于免疫耐受性,如果没有刺激CD-4阳性细胞,自反应性B细胞就无法正常工作(图2)。因此,由于我们不能在抗原中包括T细胞表位,因此肽抗原通常用于与外来T细胞表位作为载体蛋白的组合中(图1)。9
肿瘤中的体细胞突变的一部分会产生新的t细胞反应,该反应旨在靶向MHC I- NeoEpitope复合物在肿瘤细胞上,从而介导肿瘤控制或排斥。尽管新发表型对癌症免疫的中心性令人信服,但我们对什么构成的新皮象可以在体内介导肿瘤控制,以及什么区别于绝大多数类似的候选人新EPITOPE的新EPITOPE,这对新生儿的肿瘤进行了介绍,我们对什么知之甚少。在小鼠和临床试验中进行的研究已经开始揭示该领域的意外悖论。 因为癌症的新皮肤跨越了自我和非自我之间的模棱两可的基础,所以某些规则对坦率的非自身抗原(例如病毒或模型抗原)的免疫学为基础,似乎不适用于新皮菌。 由于新皮上与自我介绍如此相似,只有小变化使它们非自我,因此对它们的免疫反应至少部分地调节了对自我的免疫反应的方式。 因此,在这里通过澄清的胸膜选择的镜头来查看和理解新发表。 在这里,批判性地讨论了新皮标的生物学和临床应用中的紧急问题,并提出了一种机械和可检验的框架,该框架解释了这些奇妙抗原的复杂性和转化潜力。在小鼠和临床试验中进行的研究已经开始揭示该领域的意外悖论。因为癌症的新皮肤跨越了自我和非自我之间的模棱两可的基础,所以某些规则对坦率的非自身抗原(例如病毒或模型抗原)的免疫学为基础,似乎不适用于新皮菌。由于新皮上与自我介绍如此相似,只有小变化使它们非自我,因此对它们的免疫反应至少部分地调节了对自我的免疫反应的方式。因此,在这里通过澄清的胸膜选择的镜头来查看和理解新发表。在这里,批判性地讨论了新皮标的生物学和临床应用中的紧急问题,并提出了一种机械和可检验的框架,该框架解释了这些奇妙抗原的复杂性和转化潜力。
Daniel Fernandez-Ruiz 优先增强驻留在肝脏的记忆 T 细胞,延长其寿命,并对丰富的子孢子抗原具有特异性,可提高辐射减毒子孢子疟疾疫苗的功效
摘要:疫苗是最有效的医疗干预措施之一,在治疗传染病中发挥着关键作用。尽管传统疫苗包含杀死、灭活或减毒活病原体,可产生保护性免疫反应,但人们已经充分认识到接种疫苗的负面后果。现代疫苗已发展为含有纯化的抗原亚单位、表位或抗原编码 mRNA,使其相对安全。然而,体液和细胞反应的降低对这些亚单位疫苗构成了重大挑战。近年来,基于蛋白质纳米颗粒 (PNP) 的疫苗因其能够呈现重复的抗原阵列以改善免疫原性和增强保护性反应的能力而引起了广泛关注。从各种生物体(例如细菌、古细菌、病毒、昆虫和真核生物)中发现和表征天然存在的 PNP,以及通过计算设计的结构和将抗原连接到 PNP 的方法,为疫苗技术领域的空前进步铺平了道路。在本综述中,我们重点介绍了一些广泛使用的天然存在且经过优化设计的 PNP,因为它们适合作为有前途的疫苗平台,用于展示来自人类病毒病原体的天然抗原,以产生保护性免疫反应。此类平台在对抗新出现和重新出现的传染性病毒疾病以及提高疫苗效力和安全性方面具有巨大前景。
