2019 年新出现的新型冠状病毒 (CoV),被称为严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2),与 SARS-CoV(现为 SARS-CoV-1)和中东呼吸综合征冠状病毒 (MERS-CoV) 一样,感染率很高,已导致超过 36,405 人死亡。在没有获批上市的抗冠状病毒药物的情况下,全球范围内治疗和管理这种新型冠状病毒疾病 (COVID-19) 是一项挑战。药物再利用是一种有效的药物发现方法,它源自早期获批的药物,与从头药物发现相比,可以减少时间和成本。直接针对病毒的抗病毒药物针对病毒的特定核酸或蛋白质,而基于宿主的抗病毒药物则针对宿主的先天免疫反应或对病毒感染至关重要的细胞机制。这两种方法都必然会干扰病毒的致病机制。在这里,我们总结了目前针对冠状病毒(尤其是 SARS-CoV-2)的基于病毒和基于宿主的药物再利用前景的现状。
SARS-COV-2的不断循环导致新型病毒sublineages的连续出现。在这里,我们隔离和表征xbb.1,xbb.1.5,xbb.1.9.1,xbb.1.16.1,eg.5.1.1,eg.5.1.1,eg.5.1.3,xbf,xbf,ba.2.86.1 and jn.1 and jn.1变体,repre- sept> 80%comprie-seding> 80%的循环变体1月2024.XBB子变量在尖峰中很少但复发突变,而BA.2.86.1和JN.1 Harbour> 30其他更改。这些变体在IGROV-1中复制,但在Vero E6中不再复制,并且不明显融合。他们有效地感染了鼻皮细胞,例如5.1.3表现出最高的功能。抗病毒药保持活跃。与BA.1相比,疫苗和BA.2感染个体的中和抗体(NAB)反应明显低,而变体之间没有重大差异。XBB突破性感染增强了针对XBB和BA.2.86变体的NAB反应。jn.1与BA.2.86.1相比,ACE2的较低属性和较高的免疫逃避特性。因此,尽管不同,但这些变体的进化轨迹结合了增加的效果和抗体逃避。
Mark Abzug,医学博士儿科教授(传染病)教授学术事务副主席,科罗拉多大学医学学院Aurora学院科罗拉多州学院,CO YODIT BELEW,医学博士,医学博士,医学博士,医学博士学位副主任(DAV)抗病毒师(DAV)的治疗局(DAV),新药及其药物治疗办公室(OND),Infectious Disease and Indiatious for Infectious Contriation and Cest)(OND)(OND)(OND),CORIAN和FAMITIAD CONDIAS)(OND)(OOID)(OOID)) (FDA) Silver Spring, MD Tien Bo, PharmD Global Medical Unit Head Transplant and New Programs Takeda Pharmaceuticals Lexington, MA David Byron Head of Research and Development AntiVirus Therapeutics 7 Ardsley Court Princeton Junction, NJ John Concato, MD, MS, MPH Associate Director, Real-World Evidence Analytics Office of Medical Policy, CDER FDA Silver Spring, MD Lindsay DeVries, Au.D.,博士科学审核者产品评估与质量办公室(OPEQ)设备和放射健康中心(CDRH)FDA Silver Spring,MD
在这篇综述中,对微生物中威胁生命的抗菌抗性发展的日益关注被概述。有几种不同类型的抗菌药物,包括抗生素,抗病毒药,抗真菌剂和抗寄生虫。抗生素是用于预防和治疗人类和动物以及植物的传染病的药物。耐药性的发展可能导致感染的无效治疗,从而导致疾病扩散,严重的疾病,残疾和死亡。我们面临着抗药性病原体的越来越多的威胁,这些病原体无法治疗并威胁执行挽救生命的干预措施,例如癌症化学疗法和剖腹产,髋关节置换和器官移植。由于抗生素耐药性的全球升高,常见的抗生素在治疗广泛的细菌感染方面变得无效。可能与治疗真菌感染有关,包括患有其他疾病的患者的药物之间的相互作用。对于所有这些,我们可以使用几种抗生素。在这篇综述中,总结了抗菌耐药性,抗性发展机制,抗生素类型,当前挑战和抗生素耐药性微生物的出现的简要概述。
严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 是冠状病毒病 19 (COVID-19) 的病原体,它仍在肆虐全球,给国际社会造成严重混乱,对全球健康构成重大威胁。自 2019 年底首次爆发以来,已开发出多种干预措施来防止该病毒的传播。如今,一些疫苗已获批准并广泛使用。然而,SARS-CoV-2 迅速变异的事实使得这种方法的有效性和安全性不断受到争论。因此,仍然需要抗病毒药物来对抗 SARS-CoV-2 的感染。SARS-CoV-2 的木瓜蛋白酶样蛋白酶 (PLpro) 支持病毒繁殖并抑制宿主的先天免疫反应,这使得 PLpro 成为一个有吸引力的药物靶点。抑制PLpro不仅可以阻止病毒复制,还可以恢复宿主的抗病毒免疫力,使患者尽快康复。本文介绍了SARS-CoV-2 PLpro的结构和功能特征以及PLpro抑制剂的最新研究进展。本文还总结了目前可用的针对PLpro的抑制剂及其结构基础。
抽象的正叶病毒是节肢动物传播的单链RNA病毒,导致人类轻度至严重疾病,每年影响数百万的人,目前没有抗病毒药。该病毒属包括诸如tick传播脑炎病毒(TBEV),西尼罗河病毒(WNV)和Zika病毒(ZIKV)等病毒。正常非洲病毒具有自己的病毒蛋白,但是与其他病毒一样,它们也招募并利用几种细胞蛋白来实现其生命周期。尽管已经确定或表征了其中一些宿主因素,但其中大多数仍然不知道。在本文中,我使用了不同的工具来识别和表征与正常非病毒感染有关的新型蛋白质。了解细胞蛋白在病毒生命周期中的功能对于理解病毒的疾病机制和开发针对这些病毒的抗病毒药物很重要。在第一部分中,我们实施了蛋白质组学噬菌体显示(PROP -PD),以识别病毒和细胞蛋白之间的短线性基序(Slim)相互作用,并且该方法鉴定出多腺苷酸 - 结合蛋白1(PABP1)是许多RNA病毒的促病毒因子。在本文的第二部分中,我们通过执行抗坏血酸酯过氧化物酶(APEX)2屏幕来鉴定在TBEV NS4B附近发现的蛋白质,从而鉴定了参与TBEV感染的蛋白质。使用这种方法,我们确定了包含3(ACBD3)的酰基-COA结合域。通过修改内质网(ER)和Golgi之间的贩运,在TBEV和Langat病毒(LGTV)感染中影响病毒复制和组装的TBEV NS4B紧邻近距离发现。在论文的第三部分中,我们探讨了核孔蛋白(NUPS)在正叶病毒感染中的作用。nups是核孔复合物的基础,它是负责RNA和蛋白质在细胞核和细胞质之间运输的复合物。通过实施各种不同的分子生物学技术,我们确定NUP153和NUP98在病毒生命周期中至关重要。我们观察到,在正叶病毒感染期间,NUP153和NUP98在核中上调并从核区域募集到结合病毒RNA(VRNA)的胞质区域。我们发现NUP153调节病毒翻译,而NUP98对于病毒复制很重要,显示了该蛋白质家族在正佛病毒感染中的重要性和不同功能。此外,在本论文中,我们还评估了肽的使用来阻止这些特定的病毒宿主蛋白相互作用作为潜在的抗病毒药。我们表明,针对PABP1和NUP98的肽靶向和结合对几个正叶韦病毒是抗病毒活性的。在一起,本文中提出的发现使人们对病毒生命周期所需的特定宿主因素有了更好的了解。这些知识可用于新抗病毒药的发展。
服务简介:呼吸道合胞病毒(RSV)是一种常见的呼吸道病毒,通常会引起轻微的感冒样症状。RSV 是美国 1 岁以下儿童患细支气管炎(肺部小气道发炎)和肺炎(肺部感染)的最常见原因。感染 RSV 的人通常会在 3 至 8 天内具有传染性。但是,一些婴儿和免疫系统较弱的人即使在症状消失后仍会继续传播病毒,最长可达 4 周。1 虽然研究人员正在努力开发疫苗和抗病毒药物(对抗病毒的药物),但目前尚无针对 RSV 感染的特定治疗方法。缓解症状的步骤包括控制发烧、疼痛和防止脱水。在严重的情况下,患者可能需要住院治疗。 Abrysvo 是经 FDA 批准的疫苗,用于预防 60 岁及以上人群和孕龄 32 至 36 周的孕妇因呼吸道合胞病毒引起的下呼吸道疾病,用于预防出生至 6 个月大的婴儿因呼吸道合胞病毒引起的 LRTD 和严重 LRTD。FDA 于 2023 年 8 月 21 日批准了 Abrysvo。_______________________________________________________________________________
药品专利池是一个由联合国支持的公共卫生组织,致力于增加低收入和中等收入国家的救生药物的机会并促进挽救生命的药物。通过其创新的商业模式,MPP与民间社会,政府,国际组织,行业,患者群体和其他利益相关者合作,以优先和许可需要药物和泳池知识产权,以鼓励通用制造和开发新配方。截至2024年4月,MPP已与22个专利持有人签署了13个HIV抗逆转录病毒,一个HIV技术平台,三种丙型肝炎直接作用抗病毒药,结核病治疗,一种癌症治疗,一种后发育后预防药物,四个长期作用技术,四个或抗病毒治疗,三个或抗病毒治疗,三个抗病毒治疗,三种covire covies and covid-covid-19。MPP由Unitaid创立,该公司仍然是MPP的主要资助者。MPP的访问基本药物的工作也由瑞士开发与合作局(SDC)资助。MPP在Covid-19的活动是在日本政府,法国欧洲和外交部,德国国际合作机构和SDC的财务支持下进行的。
在没有获批疫苗的情况下,开发有效的 SARS-CoV-2 抗病毒药物对于应对当前因 COVID-19 传播而导致的大流行性健康危机至关重要。由于任何传统的药物发现计划都是一个耗时且昂贵的过程,需要十多年才能完成,因此对现有药物进行计算机模拟再利用是快速选择有希望的临床候选药物的首选方法。在此,我们提出了一项虚拟筛选活动,以识别 SARS-CoV-2 木瓜蛋白酶样蛋白酶 (PLpro) 的共价和非共价抑制剂,这些抑制剂显示出对 COVID-19 治疗的潜在多靶点活性。从 ChEMBL(版本 27.1)下载了一个包含 688 种 III 期和 1702 种 IV 期临床试验药物的数据集,并将其对接到最近发布的 PLpro 与共价结合肽抑制剂复合物的晶体结构上。通过结合蛋白质-配体相互作用指纹相似性、常规对接分数和 MMGBSA 结合自由能对获得的结果进行分析,并确定了一些有趣的候选药物以进行进一步的体外测试。据我们所知,这项研究代表了首次尝试重新利用药物来共价抑制 PLpro,并可能为针对 COVID-19 的新治疗策略铺平道路。
毫无疑问,近年来肿瘤学取得了令人瞩目的发展,大大提高了患者的预期寿命。诊断技术、手术(越来越保守)和放射治疗(更精确且副作用更少)方面取得了重大进展。早期和晚期的药物治疗也有助于减少复发,甚至延长远处转移患者的生存时间,从而使癌症可以长期保持慢性状态。因此,必须将治疗合并症视为改善生活质量护理的重要组成部分。实体瘤患者约 50% 的死亡原因与感染有关 (1)。这些感染主要是细菌感染,其次是真菌和病毒感染。感染能够显著恶化患者的预后,导致癌症治疗中断,通过增加促炎细胞的比例改变肿瘤微环境 (TME),在使用抗生素、抗真菌药和抗病毒药后造成肠道菌群失调,总体上对患者的生活质量产生负面影响 (2)。尽管癌症患者因感染而死亡的风险增加了一倍以上,但感染可能会对患者的生活质量产生负面影响。
