自主机器人组装的摘要最新进步已显示出令人鼓舞的结果,尤其是在应对精确插入挑战方面。但是,在不同的对象类别和任务之间实现适应性通常需要一个学习阶段,需要昂贵的现实世界数据收集。先前的研究通常假定插入的对象对机器人的末端效果的刚性附着,或者依赖于结构环境中的精确校准。我们提出了一种单发方法,用于高精度接触富含的操作装配任务,从而使机器人仅使用单个演示图像从随机呈现的方向上执行新对象的插入。我们的方法结合了一个混合框架,该框架将基于6-DOF视觉跟踪的迭代控制和阻抗控制融合在一起,从而通过实时视觉反馈促进高精度任务。重要的是,我们的方法不需要预先训练,并且证明了对摄像头姿势校准误差和物体内部姿势的干扰产生的不确定性的弹性。我们通过在现实世界中的广泛实验进行了拟议框架的效果,涵盖了各种高度精确的组装任务。
•政府工业部的前工业顾问。印度•新德里Sri Sringeri管理学院的创始董事•三家董事会的前董事; Traco Cables Ltd,Ampersand Informatics和Tanla Technologies Pvt Ltd•在大量公共和私人公司中开展了300多个有关自我效能和团队建设的计划,并在国防部联合战争中心的技术顾问•国防部联合战争中心的技术顾问•撰写两本书•撰写两本书:“管理项目:“管理项目”。并由共同撰写的“国防工业基础2025”印度•新德里Sri Sringeri管理学院的创始董事•三家董事会的前董事; Traco Cables Ltd,Ampersand Informatics和Tanla Technologies Pvt Ltd•在大量公共和私人公司中开展了300多个有关自我效能和团队建设的计划,并在国防部联合战争中心的技术顾问•国防部联合战争中心的技术顾问•撰写两本书•撰写两本书:“管理项目:“管理项目”。并由共同撰写的“国防工业基础2025”
这项研究通过多尺度分析调查了阿萨姆邦纳甘区的森林砍伐对生物多样性和生态系统服务的影响。通过混合方法方法,将主要数据源和次要数据源结合在一起,该研究全面研究了该地区森林砍伐的程度,驱动因素和后果。使用随机调查和讨论从85位受访者那里收集了主要数据,而次要数据来自各种文献来源和政府数据库。这些发现揭示了森林丧失和破碎的趋势,从而导致物种丰富度,碳固存,水调节和土壤肥力的大幅下降。这些结果强调了针对目标的保护策略和可持续土地管理实践的迫切需求,以减轻森林砍伐的不利影响和维护Nagaon地区的生态完整性。
简介:人工智能 (AI) 复制了人类智能,在高等教育中越来越受到关注,以应对传统的教育挑战。人工智能在病理学、心脏病学、放射学和皮肤病学方面具有巨大的应用潜力。它有可能彻底改变这些领域的现有医疗实践。本研究旨在探索马来西亚奎斯特国际大学医学生对人工智能的知识、态度和实践 (KAP)。方法:2024 年 1 月至 2024 年 3 月在奎斯特国际大学 (QIU) 医学院进行了一项横断面描述性研究。在 QIU 的医学生中分发了一份结构化问卷,其中 53 名学生回答了问卷并参与了这项研究。结果:所有学生都对人工智能有所了解,但只有 54.7% 的人知道人工智能的亚型分类。关于人工智能在医学领域、放射学和病理学中的应用,绝大多数人分别不知道 73.6%、71.7% 和 73.6%。印度人的知识水平明显高于其他种族 [ Chi(df) = 12.95 (4), P 值 = 0.005 ]。大多数学生同意人工智能的重要性 48(90.6%)、将人工智能纳入医学课程和专业培训 44(83%)、早期诊断和疾病评估 40(75.5%)、人工智能在放射学中的重要性 36(67.9%)、病理学 38(71.7%)。结论:需要对人工智能进行培训,这将提高人们对人工智能的认识,并影响他们对在医学中使用人工智能的态度。实现人工智能在医学领域的广泛和完美应用具有挑战性,但教育机构和政府组织之间的合作努力可能有助于改善这一状况。关键词人工智能、教育、医学生、病理学、放射学
摘要 - 野生啮齿动物是各种人类病原体的关键携带者,包括胚泡属。我们的研究旨在评估内蒙古自动地区和中国骗子的野生啮齿动物中胚泡的流行和遗传特征。从2023年11月至2024年2月,在这些地区捕获了486个啮齿动物。新鲜的粪便,以分离脊椎动物细胞色素B(CYTB)基因的DNA和PCR扩增,以鉴定啮齿动物。随后,利用核糖体RNA(RRNA)基因的部分小亚基的PCR分析和测序来检测所有粪便样品中的胚泡。发现27.4%(133/486)为胚泡阳性。结果表明,在拉特斯·诺维古斯(Rattus Norvegicus)中感染了四种感染胚泡的啮齿动物,32.3%(63/195),在Mus musculus中为15.1%(16/106),20.2%(18/89)在Apodemus agrarius in Apodemus agrarius,以及37.5%(37.5%)(36/96/96/96)中。序列分析确立了五个胚泡亚型的存在:ST1(n = 4),ST2(n = 2),ST4(n = 125,主要的亚型),ST10(n = 1)和新的ST(n = 1)。识别的人畜共患亚型(ST1,ST2,ST4和ST10)突出了野生啮齿动物在胚泡向人类传播中所起的可利用作用,从而提高了人类感染的机会。同时,新序列的发现还为该寄生虫的遗传多样性提供了新的见解。
古瓦哈蒂(Guwahati)是科学技术高级研究研究所(IASST),是政府科学技术系的自治研发研究所。印度。 该研究所参与了物理,化学,数学和生命科学的特定领域的研究领域。 该研究所的目的是通过跨不同部门的强大跨学科研究方法为基础科学做出贡献,并利用本地资源来开发技术。 Institute配备了现代且复杂的仪器,包括TEM,SEM,XRD,LCMS-MS,AFM,DNA Sequencer和计算设施,用于尖端科学研究。印度。该研究所参与了物理,化学,数学和生命科学的特定领域的研究领域。该研究所的目的是通过跨不同部门的强大跨学科研究方法为基础科学做出贡献,并利用本地资源来开发技术。Institute配备了现代且复杂的仪器,包括TEM,SEM,XRD,LCMS-MS,AFM,DNA Sequencer和计算设施,用于尖端科学研究。
摘要。这项研究的目的是研究褪黑激素(MT)对锂羊毛山羊(LCG)皮肤纤维细胞中LNCRNA,mRNA和miRNA表达模式的影响。200 ng l -1 mt(MT组)刺激LCG皮肤纤维细胞48小时,并使用对照组(CON组)进行RNA测序(n = 3)。CERNA网络是通过对涂层坑和内吞囊泡的测序数据和透射电子显微镜观察的生物信息学分析来构建的。在这项研究中,结果表明,MT处理显着促进了LCG皮肤细胞的增殖,并增加了涂层坑和囊泡的数量。总共有775个mRNA,57个LNCRNA和10个miRNA具有差异性,如MT组和CON组管理的皮肤纤维细胞的RNA测序所示。研究了CERNA的调节网络,结果表明,肌醇磷酸代谢,CGMP-PKG信号传导途径,内吞作用和其他途径在LCG Cashmere的生长和发展中起着一定作用。此外,关键基因(例如CREB1,PIK3C3,AGAP3,MEF2A,ASAP2,IRAG1,PNISR,PNISR,PIP5K1A,SRSF11,ZRANB2,RBM39和CBL)受CHI-MIR-34C-34C-5P,CHI-MIR-3P和CHI-34C-3P和CHI-34C-5P和CHI-3P和CHI-3P和CHI-3P和CHI-3P。上述mRNA受15个lncrnas的竞争性约束(例如,MSTRG.28630.12,MSTRG.28660.14,MSTRG.28099.7)。以及通过双重荧光素酶和其他实验,进一步确定了PIP5K1A是miR-34c-5p的靶基因。此发现提供了有关褪黑激素促进羊绒生长的分子机制的新见解。
rs。1200/ - 对于一般(UR)/OBC-NCL/EWS考试模式:基于计算机的客观测试试验纸模式:多项选择问题•候选人希望出现GAT-B 2024可能会读取有关GAT-B 2024的详细信息公告,该信息公告托管于以下位置:o https:ohttps://dbt.nta.ac.ac.in/ o https://rcb.res.in/dbtpg/upload/gatb_information_bulletin_2024.pdf•参与机构/大学和GAT-B 2024的参与机构列表,请访问:
由 Marcus Lee Design 设计的原创设计。该概念是负鼠皮斗篷的视觉表现,象征着 Peter Mac 是一个保护、治疗和文化安全的地方。背景描绘了一件铺开的斗篷,展示了缝合在一起的负鼠皮。五个外部彩色形状代表着 Kulin NaƟon 五个语言群体的聚集。这些相互连接的形状和内部的辐射线象征着患者和工作人员之间的沟通线,工作人员会倾听患者的意见。路径通向设计的中心,象征着 Peter Mac 是聚集地。该概念直观地表达了 Peter Mac 是一个文化安全的地方,为原住民癌症患者及其家人提供归属感、理解、同情、温暖和同理心。该艺术作品是在与原住民和托雷斯海峡岛民咨询委员会、RAP 工作组、患者以及 2021-2023 年和解行动计划的工作人员密切协商后创作的。
希瓦吉大学科尔哈普尔分校学术委员会成员 (2023) KBC 北马哈拉施特拉大学贾尔冈分校研究委员会成员 (2023) 麻省理工学院世界和平大学客座教授,浦那 (2021-至今) 马哈拉施特拉邦污染控制委员会 (MPCB) 技术委员会成员 拉吉夫·甘地科学技术委员会 (RGSTC, 希瓦吉大学科尔哈普尔分校) 同行委员会成员 (2015-2017) HEMRL 实验室研究委员会 (LRC) 成员,浦那 (2015-2018) 亚什万特拉奥·恰万马哈拉施特拉邦开放大学参议院成员,纳西克 (2015-2017) 维什瓦卡玛艺术、商业和科学学院管理机构成员,浦那 (2013-2016) 研究咨询委员会成员,Walchand学院,索拉普尔 (2013-2016) 咨询委员会成员,Suyash Gurukul,索拉普尔 咨询委员会成员,地平线探索学院,纳德 知识产权委员会成员,希瓦吉大学,科尔哈普尔 (2014) 咨询委员会成员,聚合物卓越中心,巴罗达 Maharaja Sayajirao 大学,巴罗达 (2013) 参议院成员,索拉普尔大学,索拉普尔 (2010-2014) 担任多所大学的学术委员会成员 咨询委员会成员,地平线探索学院,纳德 同行委员会成员,拉吉夫·甘地科学技术委员会 (RGSTC,希瓦吉大学,科尔哈普尔) (2015-2017) ACRHEM 进度监测委员会成员,高能材料高级研究中心(ACRTTEM),海得拉巴大学 DRDO 卓越中心 印度聚合物科学学会终身会员 SPSI-MACRO-2018(国际聚合物科学与工程会议)联合召集人