BRISBANE, Australia, April 03, 2024 (GLOBE NEWSWIRE) -- NOVONIX Limited (NASDAQ: NVX, ASX: NVX) (“NOVONIX” or “the Company”), a leading battery materials and technology company, today announced that it has signed a definitive agreement under which its wholly owned subsidiary, MD South Tenements Pty Ltd, which holds the Mount Dromedary natural graphite exploration兴趣将被剥离为锂能量有限公司(ASX:LEL)的子公司Axon Grustite Limited(“ Axon”)。lel将根据协议对轴突的伯克和Corella Phaphite项目贡献其权益。作为交易的考虑,Novonix将获得Axon的股份,当事方打算在澳大利亚证券交易所(“ ASX”)上列出。交易需要完成当事方的尽职调查,拟议的首次公开发行(“ IPO”)的完成,并获得了将Axon录取给ASX的批准。
在手动去角质期间使用的玻璃纸胶带,并帮助混合过程中施加的剪切力,以剥离效果。同时,纳米纤维素的表面亲水性羟基和(110)平面上存在的带电羧酸盐允许氢键键合到水中,并将其作为稳定的水分散体分散。尽管节奏CNF在帮助去角质和分散去角质的石墨烯方面具有有效性,但鉴于纤维素化学的多样性以及潜在的效果在促进石墨烯生产中,速度的高成本本身提高了替代纳米纤维素的需求。是硫酸化的纳米纤维素,它们既有阴离子,又有速度CNF,并且可以通过多种硫酸盐途径轻松产生。纤维素的硫酸化数十年来一直闻名,以产生水分性和由亲水性硫酸盐基团赋予的超级吸收性。14各种Cra纸浆,15,16棉,17和CNCS 18的水性硫酸盐和含钠的CNCS 18和Bisul bisul te产生了宏观大小的硫酸化纤维素,15,17 10-17 10 - 60 nm宽的CNF,16和200 nm diamemetion diamemety spheres or spheres或8 nm v。18冻干CNF 19
其独特的特征。1,2,4–6它具有较大的理论表面积(B 2600 m 2 g 1),高内在迁移率(B 200 000 cm 2 v 1 S 1),高Young的模量(B 1.0 TPA),热导率,热导率,b 5000 W m 1 K 1),b 5000 w m 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 kn ander-tance tance tance(b 97.7.7.7.7.7%),和良好的效率(b 97.7.7%),和良好用于开发具有优质特性的聚合物纳米复合材料,可用于许多不同的应用。12,13然而,其在各种溶剂中的溶解度差14,15限制了其在许多领域的进一步应用。另一方面,通过添加亲水性官能团(例如氧基团),可以轻松地将石墨烯的表面修改为氧化石墨烯。氧化石墨烯,GO,是一种多层材料,由石墨烯层组成,该石墨烯层在表面或各个片的周长中与不同的氧种(羟基,Car- boxyl,环氧基团)功能化。16–18由于弱范德华力,p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p的相互作用和氢键形成,形成了b八8Å距离,形成了层间的画廊。水分子,其他极性部分以及极性水力聚合物可以与表面相互作用,因为它们的亲水性,并且驻留在画廊中19
碳石墨是一种碳的结晶形式,该碳由二维“石墨烯”结构中的六角形碳原子层组成。石墨烯层彼此堆叠,形成具有高度各向异性的三维结构。每一层中的碳原子都通过强共价键将其连接在一起,从而产生了强,稳定的晶格结构。然而,这些层本身由弱的范德华(Van der Waals)组合在一起,使它们能够轻松地彼此滑动。碳石墨的特性高度取决于石墨烯层的方向和比对。当层平行对齐时,材料沿对齐方向表现出高强度和刚度,但在其他方向上更弱且更灵活。碳含量用于高强度,刚性和电导率的多种应用。一些常见的应用包括电子接触,电动机刷以及航空空间和防御应用中的结构材料。我们工作的目的是描述石墨的结构,其物理和化学特性及其应用。
研究小组或电化学能源转换和存储,部门,或化学与材料科学,学校工程,阿尔托大学,P.O。Box 16100,FI-00076,芬兰B LUT大学,Yliopiston Cat 34,53850,芬兰C Labratoire Matim,大学。 1, Uppsala, 75121, Sweden f TOFWERK AG, Schoore Streets 39, 3645, Thun, Switzerland g European Commission, Joint Research Centre (JRC) Pettes, Netherlands 54a i National Institute of Chemistry, Department of Materials Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia j National Physical Laboratory (NPL), Hampton Road,泰丁顿,TW11 0LW,英国k Die Physikalisch-Technische Bundstant,德国,机构 - 技术邦德斯塔尔,D-38116,德国邦迪,德国Box 16100,FI-00076,芬兰B LUT大学,Yliopiston Cat 34,53850,芬兰C Labratoire Matim,大学。 1, Uppsala, 75121, Sweden f TOFWERK AG, Schoore Streets 39, 3645, Thun, Switzerland g European Commission, Joint Research Centre (JRC) Pettes, Netherlands 54a i National Institute of Chemistry, Department of Materials Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia j National Physical Laboratory (NPL), Hampton Road,泰丁顿,TW11 0LW,英国k Die Physikalisch-Technische Bundstant,德国,机构 - 技术邦德斯塔尔,D-38116,德国邦迪,德国
b'in与最先进的锂离子电池(LIBS)中的阴极化学的相对广泛的选择形成了鲜明对比,石墨是所有电池应用中的多元阳极材料。如今,基于石墨的阳极是市售Libs中最常用的负电极材料。 近年来,通过添加少量硅的纯理论特异性能力为372 mahg 1的纯石墨阳极的电池容量能力为372 mahg 1,从而使3572 MAHG 1 [1]的理论特异性能力保持较高的理论特异性能力[1],并且在高安全标准和较高的成本和较高的成本上保持了低工作电位。 [2]电化学活性石墨以2H构型构建分层六边形结构排序。 [3]在电化学循环期间,锂离子将可逆地置入石墨结构,从而导致不同的岩石阶段li x c 6(x <1)(x <1)(阶段),实验' div>如今,基于石墨的阳极是市售Libs中最常用的负电极材料。近年来,通过添加少量硅的纯理论特异性能力为372 mahg 1的纯石墨阳极的电池容量能力为372 mahg 1,从而使3572 MAHG 1 [1]的理论特异性能力保持较高的理论特异性能力[1],并且在高安全标准和较高的成本和较高的成本上保持了低工作电位。[2]电化学活性石墨以2H构型构建分层六边形结构排序。[3]在电化学循环期间,锂离子将可逆地置入石墨结构,从而导致不同的岩石阶段li x c 6(x <1)(x <1)(阶段),实验' div>
在2023年,中国是世界领先的石墨生产商,估计占世界总产量的77%。在中国生产的石墨中约有15%是无定形的,薄片约为85%。10月,中国宣布出口限制将于12月1日生效某些商品,包括薄石墨,球形石墨(天然和合成),可扩展的石墨和某些合成石墨产品。出口商将需要申请许可,根据一个石墨生产商,所需的出口合同,技术产品规格以及最终用户的身份以及特定的最终用途。在今年的前9个月中,中国出口了58,000吨石墨浓缩液,小于2022年同期出口的81,000吨。领先的接受者是大韩民国(18%),日本(17%),印度(14%)和美国(8%)。在2023年的同一时期,中国出口了39,000吨天然球形石墨,少于2022年出口的45,000吨。领先的接受者是大韩民国(56%),美国(23%)和日本(19%)。
摘要:聚乙烯二氟(PVDF)扩展的石墨(EXGR)纳米复合材料已通过溶液混合和熔融加工方法制备。在存在聚乙烯基吡喃酮(PVP)的情况下,石墨纳米片(GNSS)在PVDF矩阵中的分散体增强,如田间发射扫描电子显微镜分析所暗示的,导致非常低的电溶解率(0.3 wt%EXGR)。X射线衍射,傅立叶变换红外光谱和差异扫描Calorim-etry(DSC)分析证实了电活性伽玛和非极性α相的共存。与GNSS周围的PVP链包裹可降低PVDF-EXGR纳米复合材料中的结晶度,而DSC分析证明,与整洁的PVDF膜相比。热重分析证实,PVDF-EXGR纳米复合材料在500°C以上的热稳定性增强,主要归因于PVP辅助的GNSS分散体。与整洁的PVDF膜相比,溶液混合PVDF-EXGR纳米复合膜的水接触角在有或没有PVP的情况下增加。与溶剂铸膜相比,压缩式PVDF-EXGR纳米复合材料还表现出PVDF的电活性伽玛和非极性α阶段,其电导率的降低。