在饮用水生产过程中使用快速砂过滤(RSF),用于去除颗粒,可能有害的微生物,有机物质和无机化合物,例如铁,锰,铵和甲烷。但是,RSF也可用于去除某些有机微污染物(OPM)。在这项研究中,可以通过生物增强来刺激填充全尺度RSF的沙子的柱子中的拆卸(即用另一个RSF的沙子接种RSF和/或生物刺激(即添加刺激微生物生长的营养素,维生素和微量元素)。结果表明,柱中的PFOA,卡马西平,1-H苯并二唑,苯并二氮酸酯和二氨二醇的去除量很低(<20%)。普萘洛尔和双氯芬酸的去除率更高(50 - 60%),可能通过吸附过程发生普萘洛尔去除,而对于双氯芬酸,尚不清楚去除是否是物理化学和生物学培训的组合。此外,生物学和生物刺激导致38天后加巴喷蛋白和美托洛尔的99%去除,孵育52天后去除99%。没有生物刺激的生物仪柱显示52天后加巴喷丁和美托洛尔的去除率为99%,在80天后进行了Acesulfame。相比之下,非生物仪的柱未去除加巴喷丁,去除<40%的美托洛尔,仅在孵育80天后才显示出99%的丙硫酸含量。去除这些OMP与铵氧化和氨氧化细菌的绝对丰度负相关。16S rRNA基因测序表明,丙硫酸含量,加巴喷丁和美托洛尔的抗粉化与特定细菌属的相对丰度呈正相关,这些属的物种含有异养和有氧或有氧或硝化的代谢。这些结果表明,RSF的生物提升可以成功地去除,在这种情况下,生物刺激可以加速这种去除。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年3月7日。 https://doi.org/10.1101/2025.03.03.03.03.641322 doi:Biorxiv Preprint
值得注意的是,深海贻贝中的甲烷营养细菌 - 钥匙共生体 - 在暴露的浅水贻贝中占主导地位。这种转移与与免疫反应和内吞作用有关的基因表达的变化相关,突出了贻贝及其共生体之间的协同关系。
在岛上(env a -env d)和高度的三维表示,并标有El Teide Stratovolcano的峰值。G。G的近似分布。 Eisentrauti和G. G。与红线一起用黑线和系统发育进化枝分开(Thorpe等人1993; Richard&Thorpe 2001;布朗等人。 2006)。 G. G。 Insulanagae仅发生在近海胰岛Roque de Fuera de Anaga上。 采样区域显示了黑色圆圈,用于基因型环境协会(GEA)的南北采样区域以蓝色为彩色。1993; Richard&Thorpe 2001;布朗等人。2006)。G. G。 Insulanagae仅发生在近海胰岛Roque de Fuera de Anaga上。 采样区域显示了黑色圆圈,用于基因型环境协会(GEA)的南北采样区域以蓝色为彩色。G. G。 Insulanagae仅发生在近海胰岛Roque de Fuera de Anaga上。采样区域显示了黑色圆圈,用于基因型环境协会(GEA)的南北采样区域以蓝色为彩色。
抽象的快速淋巴细胞细胞分裂对蛋白质合成机制提出了巨大的需求。通过翻译起始抑制剂处理细胞或小鼠后,纯种核糖体相关的核糖体相关链的流式细胞仪测量表明,乳腺细胞的典型率在典型的体外静止淋巴细胞和体内细胞中,核糖体在体内延长。有趣的是,通过体内激活或体外的发热温度,可以提高长制速率30%。静止和活化的淋巴细胞具有丰富的单体群体,其中大多数在体内积极翻译,而在体外,几乎所有的都可以在激活之前停滞不前。定量淋巴细胞蛋白质量和核糖体计数表明,细胞蛋白与核糖体的矛盾之比不足以支持其快速的体内分裂,这表明活化的淋巴细胞蛋白质组在体内可能以不寻常的方式产生。我们的发现证明了蛋白质合成在淋巴细胞和其他快速分裂的免疫细胞中的全球构成的重要性。
Mitchell G. Miglis,M.D。,1* Charles H. Adler教授,医学博士,2 Elena Antelmi,M.D。4.5 Luca Baldelli,医学博士,6教授Bradley F. Boeve M.D.,7 Matteo Cesari,博士,博士,8 Antonia,M.D. Jean-FrançoisGagnon博士,13 Ziv Gan-Or,M.D。14-16 Wiebke Hermann,医学博士,17.18BirgitHögl教授K.L.Leenders,M.D。,23 Simon J.G.教授 Lewis,M.D.,24 Claudio Liguori,M.D.,M.D. Jun Liu,M.D.,26 Christine Lo,M.D.,19 Kaylena A. Ehgoetz Martens,Ph.D.,27 Jiri Nepozitek,M.D. 31 Michal Rolinski,医学博士,32 Jan Rusz,Ph.D.,33 Ambra Stefani,M.D.,8 Rebekah L. S. Summers博士,博士,34 Dalh Yoo,M.D.,35 Jennifer Ziser,M.D. 21.38Leenders,M.D。,23 Simon J.G.教授Lewis,M.D.,24 Claudio Liguori,M.D.,M.D. Jun Liu,M.D.,26 Christine Lo,M.D.,19 Kaylena A. Ehgoetz Martens,Ph.D.,27 Jiri Nepozitek,M.D. 31 Michal Rolinski,医学博士,32 Jan Rusz,Ph.D.,33 Ambra Stefani,M.D.,8 Rebekah L. S. Summers博士,博士,34 Dalh Yoo,M.D.,35 Jennifer Ziser,M.D. 21.38Lewis,M.D.,24 Claudio Liguori,M.D.,M.D. Jun Liu,M.D.,26 Christine Lo,M.D.,19 Kaylena A. Ehgoetz Martens,Ph.D.,27 Jiri Nepozitek,M.D. 31 Michal Rolinski,医学博士,32 Jan Rusz,Ph.D.,33 Ambra Stefani,M.D.,8 Rebekah L. S. Summers博士,博士,34 Dalh Yoo,M.D.,35 Jennifer Ziser,M.D.21.38
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月1日发布。 https://doi.org/10.1101/2025.02.28.640804 doi:biorxiv preprint
当前的基因组编辑工具使许多物种中选定的DNA序列的靶向诱变。但是,通过基因组编辑方法引入突变的效率和类型在很大程度上取决于目标位点。因此,很难预测编辑操作的结果。因此,量化突变频率的快速测定对于正确评估基因组编辑作用至关重要。我们开发了两种快速,具有成本效益且容易适用的方法:(1)潮汐,可以准确识别和量化插入和删除(indels),这些插入和删除(indels)在引入双链断裂后出现的(dsbs); (2)Tider,适用于模板介导的编辑事件,包括点突变。这两种方法仅需要一组PCR反应和标准的Sanger测序运行。通过潮汐或TIDE算法分析序列轨迹(可在https://tide.nki.nl或https://deskgen.com上获得)。例程很容易,快速,并且提供了比当前基于酶的测定更详细的信息。潮汐和TIDE加速基于DSB的基因组编辑策略的测试和设计。