描述/背景阿尔茨海默氏病(AD)是老年患者痴呆症的最常见原因。早期的AD广告少得多,但可能发生在非善良的个体中。对于晚发的AD,家庭中存在风险的一部分,这表明遗传因素的贡献。早期发作阿尔茨海默氏症具有家庭风险的强大组成部分,家庭聚集在家庭中,因此表明是遗传性疾病的变体。广告通常与家族史有关; 40%的AD患者至少有一个受苦的一级亲戚。许多基因与晚期AD相关,而染色体1、14和21中的变体与早期发作家族性AD有关。1个遗传变异者早期发作家族性AD(即65岁之前但最早30岁)的个体构成了一小部分AD患者。可能显示出常染色体的遗传模式。在受影响的家族中已经鉴定出3种基因中的致病变异:淀粉样蛋白β前体蛋白基因(APP),Presenilin 1(PSEN1)基因和Presenilin 2(PSEN2)基因。APP和PSEN1变体的其他原因没有100%的渗透率,而PSEN2具有95%的渗透率。这些基因中的各种变体与AD相关。 PSEN1中的变体似乎是最常见的。虽然只有3%至5%的AD患者患有早期发作疾病,但在这些患者中,已确定了多达70%或更多的患者。可识别的遗传变异是AD的罕见原因。psen1和在罕见的患者中对APOE 4等位基因进行了apoE 4等位基因在患有早期发作AD的罕见患者中的APP,PSEN1或PSEN2变体中进行了研究,以帮助诊断出患有AD的症状或一种症状的患者,一种用于AD的症状技术,可用于评估AD的症状技术,以评估广告的家庭病史。
补体途径中的其他确认基因包括C2,C3,CFB和CFI。[4]在全基因组关联研究的基础上,已经与高密度脂蛋白(HDL)胆固醇途径基因有关,包括CETP和LIPC,以及可能的LPL和ABCA1。[4,5]胶原基质途径基因COL10A1和COL8A1,载脂蛋白E APOE和细胞外基质途径基因Timp3和FBN2也已与AMD链接。[4]参与DNA修复(RAD51B)和血管生成途径(VEGFA)中的基因也与特定SNP一样与AMD相关。[6]最近Fang(2021)提出了与上述早期AMD和中级AMD不同遗传生物标志物使用的系统综述,它们比其他类别的生物标志物更可再现和侵入性。[7]
i p系统是由brain脑chi iSogeni I小胶质细胞和IBVMEC构建的,与从CE s患者获得的HIPSC区分开来。“体外人类血脑屏障的重建揭示了一种致病机制。因此,该项目的目的是开发周细胞中APOE4的综合脑芯片模型。”自然医学26.6(2020):952-963。神经元,星形胶质细胞,周细胞,小胶质细胞和BIMVEC的AD•BrownJohn,Philip W.等。“人类干细胞衍生的小胶质细胞中错义Trem2突变的功能研究。”来自APOEε4等位基因AD患者的HIPSC的将在图3中产生A。 ibmvecs培养在脑芯片上。 IBMVEC在底部(血管)通道干细胞报告10.4(2018):1294-1307上培养。将在图3中产生A。ibmvecs培养在脑芯片上。IBMVEC在底部(血管)通道干细胞报告10.4(2018):1294-1307上培养。
阿尔茨海默病是一种渐进性神经退行性疾病,其特征是近期情景记忆、语言、视觉空间功能和执行功能的丧失,以及疾病后期的神经行为异常。3 在疾病的中后期,可能会出现幻觉、焦虑和抑郁。病理学上,AD 的特征是淀粉样斑块和神经原纤维(或 tau)缠结,导致神经元丢失。4 阿尔茨海默病有两种类型——早发性和晚发性。早发性非常罕见(不到 10% 的 AD 病例),症状首次出现在 30-65 岁。它通常是遗传性的。晚发型 AD 是最常见的类型,可能与 APOE 基因有关,通常在 65 岁后才出现症状。5,6 人类有三种主要的基因多态性,即 ɛ2、ɛ3 和 ɛ4,其中 ɛ4 的基因表达是导致晚发型 AD 的最重要风险因素之一。6,7 阿尔茨海默病的病因
结果:RNA测序将AMBP识别为CAVD的关键调节剂。CAVD患者的AV和高胆固醇饮食(HCD)诱导的APOE - / - 小鼠的AV中增加了ABP。体内,AMBP过表达显着降低了HCD诱导的AV钙化和纤维化。在体外,AMBP敲低的成骨标记物,Runx2和Osterix升高,并促进了由成骨培养基(OM)诱导的瓣膜间质细胞中的钙沉积,而AMBP过表达反向这些影响。从机械上讲,AMBP通过竞争性结合FHL3的锌指域,抑制了OM诱导的ERK1/2(P-ERK1/2)和JNK(P-JNK)的磷酸化。这种相互作用破坏了FHL3在防止P-ERK1/2和P-JNK的泛素蛋白介导的降解中的保护作用。P-ERK1/2和P-JNK抑制剂和激动剂证实,AMBP对CAVD的保护作用是通过这些途径在体内和体外介导的。
阿尔茨海默氏病(AD)是一种逐步的,进行性痴呆症,通常在65岁及以上的患者中影响记忆和认知。其患病率估计为小于或等于65岁的患者的1-2%,并随着年龄的增长增加到85岁的患者的大约30-50%。AD发展的危险因素包括糖尿病,高血压,血脂异常,代谢综合征,肥胖,吸烟,脑血管损伤,女性性,AD的家族史以及APOE基因的Epsilon-4的存在。与AD一致的神经系统发现包括Tau蛋白和β-淀粉样斑块的神经原纤维缠结的存在。AD是一种使人衰弱的疾病,因为它最终会损害患者进行日常活动的能力并引起其他心理症状,包括但不限于焦虑,抑郁,混乱,躁动,妄想,妄想和幻觉。在60-69岁的诊断后,估计的中位生存期约为6.7岁。
具有人IPSC衍生细胞类型的三维(3D)球体已成为一种有希望的药物筛查和疾病模型的体外模型系统。最近的出版物表明,IPSC衍生的皮质球体具有更大的“大脑般”复杂性,并且是HTS的强大测定平台。A.示意图,用于设计自己的ICELL神经球,用于“脑中的大脑”研究; B.细胞在ULA板上自组装,在24-28小时内形成3D结构; C.来自25K细胞输入的神经球直径约为400 µm。D. 384W中的图像,在incucyte上,带有掩模用于分析(黄色)或cal6染料; E.具有APOE 4/4细胞的AD疾病模型产生峰值计数较低和幅度较高的Ca2+痕迹。已知药物的治疗可以逆转表型。F. GFP-Microglia是优化共培养的有用工具;但是,并非所有条件都支持纳入MGL;一旦进入,该模型对于神经炎症很有用。
由于其广泛的患病率和复杂的危险因素,阿尔茨海默氏病(AD)仍然是最广泛研究的神经退行性疾病之一。年龄是AD的关键危险因素,可以通过生理年龄和估计的脑年龄之间的差异来估计。更有效地对AD风险进行建模,整合生物学,遗传和认知标记是必不可少的。在这里,我们利用了表达主要APOE人类等位基因和人类一氧化氮合酶2的小鼠模型来复制AD的遗传风险和人性化的先天免疫反应。我们使用多元数据集估计大脑年龄,其中包括脑连接组,APOE基因型,年龄和性别等受试者特征以及行为数据。我们的方法论使用的特征注意图神经网络(FAGNN)用于整合不同的数据类型。使用2D卷积神经网络(CNN)处理具有1D CNN的受试者特征,使用象限注意模块通过图神经网络处理。该模型的年龄预测为31.85天产生了平均绝对误差,均方根误差为41.84天,表现优于其他减少模型。此外,Fagnn确定了衰老过程中涉及的关键大脑连接。最高的权重被分配给cingulum和call体,纹状体,海马,丘脑,下丘脑,小脑和梨状皮层之间的连接。我们的研究证明了预测衰老模型和AD遗传风险的脑年龄的可行性。我们的发现强调了在AD风险建模的背景下,遗传学和大脑衰老的复杂相互作用。为了验证我们发现的有效性,我们比较了连通性最高的区域的分数各向异性(FA),返回到原始概率(RTOP)(RTOP),返回到平面概率(RTPP),返回到轴的概率(RTAP),以及年轻的年龄段和年龄段的年龄差异很大。年轻的小鼠与选定连接中的较旧组相比表现出更高的FA,RTOP,RTAP和RTPP,这表明白质区的降解在衰老和Fagnn的选择中起着至关重要的作用。我们的分析表明,相对于APOE3和APOE4,APOE2具有潜在的神经保护作用,在该APOE3和APOE4中,APOE2似乎减轻了与年龄相关的变化。
纳米医学为提高现有药物的疗效以及开辟新的治疗策略(例如基因治疗的出现)提供了新的可能性。在血流中流动时,药物纳米载体与血液蛋白质相互作用,通常会经历大小、形状或聚集的物理变化,以及表面的化学变化。游离蛋白质与纳米颗粒 (NP) 表面的相互作用导致蛋白质冠 (PC) 的形成,这种蛋白质外壳的结构和组成对纳米颗粒在任何生物体中的命运起着重要作用。[1–3] 例如,PC 中的 ApoE 和丛生蛋白的存在与血流清除速度变慢有关。[4] 其他特定蛋白质的吸附也与脑易位增强、[5] 肝细胞靶向、[6] 巨噬细胞摄取减少 [7] 或细胞摄取整体改变有关。 [8,9] PC形成的一个重要结果是改变或筛选纳米颗粒药物递送系统的靶向配体,这最终影响其治疗效果。[10]
精确医学的愿景之一是基于分子特征而不是基于表型证据来重新定义疾病分类法。但是,实现这一目标是高度挑战的,特别是在神经病学方面。我们的贡献是基于15种构成27种蛋白质的15个分子机制的基因负担(例如apoE)在两种疾病中都有描述。我们证明,使用稀疏自动编码器和稀疏的非负基质分解的联合AD/PD聚类是可重现的,并且可以与临床,病理生理和分子水平上的AD和PD患者亚组的显着差异有关。因此,簇是与疾病相关的。据我们所知,这项工作是神经退行性疾病领域基于机制的分层的首次演示。总的来说,我们将这项工作视为迈向基于分子机制的神经疾病分类法的重要一步,这可以通过超越基于经典表型的疾病定义来帮助未来开发出更好的靶向疗法。